out bb88; off nat; %for all xxx let cos(xxx)**2 + sin(xxx)**2 = 1; %for all xxx let sinh(xxx) = sqrt(cosh(xxx)**2 - 1); for all xxx let sinh(xxx)**2 = cosh(xxx)**2 - 1; %------- a curve in normal parametrization --------------- xs:= 2/(a*cosh(a*s + d)) + cx; us:= s - 2*sinh(a*s +d)/(a*cosh(a*s + d)) + cu; %------- tangent vector to the curve --------------- ttx:=df(xs,s)/sqrt(df(xs,s)**2 + df(us,s)**2); ttu:=df(us,s)/sqrt(df(xs,s)**2 + df(us,s)**2); dtt:=sqrt( ttx**2 + ttu**2 ); %------- tangent curvature of the curve --------------- kaptt:=sqrt( df(ttx,s)**2 + df(ttu,s)**2 ); kaptt:=sqrt( (( ttx*df(ttu,s) - df(ttx,s)*ttu )/(dtt**3))**2 ); %------- normal vector to the curve --------------- nnx:=df(ttx,s)/sqrt(df(ttx,s)**2 + df(ttu,s)**2); nnu:=df(ttu,s)/sqrt(df(ttx,s)**2 + df(ttu,s)**2); %*************************************************************** % x,u coordinates %*************************************************************** %---------sinh(a*s +d)>=0-----------------------; cosh(a*s + d):=2/(a*x); sinh(a*s +d):=sqrt(cosh(a*s+d)**2 - 1); ttx; ttu; nnx; nnu; kaptt; genx:=ttx*df(-kaptt,x)*nnx + (-(kaptt**2)/2)*ttx; genu:=ttx*df(-kaptt,x)*nnu + (-(kaptt**2)/2)*ttu; eeex:=1; eeeu:=ttu/ttx; procedure agen(fff); rrr:=genx*df(fff,x) + genu*df(fff,u); procedure att(fff); rrr:=ttx*df(fff,x) + ttu*df(fff,u); procedure aeee(fff); rrr:=eeex*df(fff,x) + eeeu*df(fff,u); %----------commutators---------------- agen(eeex) - aeee(genx); agen(eeeu) - aeee(genu); agen(ttx) - att(genx); agen(ttu) - att(genu); %---------sinh(a*s +d)<0-----------------------; cosh(a*s + d):=2/(a*x); sinh(a*s +d):=-sqrt(cosh(a*s+d)**2 - 1); ttx; ttu; nnx; nnu; kaptt; genx:=ttx*df(-kaptt,x)*nnx + (-(kaptt**2)/2)*ttx; genu:=ttx*df(-kaptt,x)*nnu + (-(kaptt**2)/2)*ttu; shut bb88; bye; end;