out kk; off nat; %******************************************************** % EXAMPLE (16 08 97) % 1 - soliton solutions of mKdV eq. % as curvature of moving curve in 2D euclidean space %******************************************************** %for all xxx let cos(xxx)**2 + sin(xxx)**2 = 1; %for all xxx let sinh(xxx) = sqrt(cosh(xxx)**2 - 1); for all xxx let sinh(xxx)**2 = cosh(xxx)**2 - 1; %for all xxx let sinh(xxx)**2 + 1 = cosh(xxx)**2; %------- a curve in normal parametrization --------------- % s - normal parameter % p - parameter of evolution %--------------------------------------------------------- xs:= (2/a)*1/cosh(a*s - (a**3)*p - cx); %us:= s - (2/a)*sinh(a*s - (a**3)*p - cx)/cosh(a*s - (a**3)*p - cx) % - (2/a)*sinh((a**3)*p + cx)/cosh((a**3)*p + cx) + cu; us:= s - (2/a)*sinh(a*s - (a**3)*p - cx)/cosh(a*s - (a**3)*p - cx) - (2/a)*sinh(cx)/cosh(cx) + cu; %------- tangent vector to the curve --------------- ttx:=df(xs,s)/sqrt(df(xs,s)**2 + df(us,s)**2); ttu:=df(us,s)/sqrt(df(xs,s)**2 + df(us,s)**2); dtt:=sqrt( ttx**2 + ttu**2 ); %------- normal vector to the curve --------------- nnx:=df(ttx,s)/sqrt(df(ttx,s)**2 + df(ttu,s)**2); nnu:=df(ttu,s)/sqrt(df(ttx,s)**2 + df(ttu,s)**2); %------- tangent curvature of the curve --------------- kaptt:=sqrt( df(ttx,s)**2 + df(ttu,s)**2 ); kaptt:=sqrt( (( ttx*df(ttu,s) - df(ttx,s)*ttu )/(dtt**3))**2 ); %------------------ mkdv test --------------------------- df(kaptt,p) + (3/2)*kaptt**2*df(kaptt,s) + df(kaptt,s,3); %------- symmetry generator --------------- vvx:=df(xs,p); vvu:=df(us,p); df(kaptt,s); kaptt**2/2; c1:=-kaptt**2/2; c2:=-df(kaptt,s); genx:=c1*ttx + c2*nnx; genu:=c1*ttu + c2*nnu; vvx; vvu; genx-vvx; genu-vvu; %*************************************************************** % x,u coordinates (pierwszy lisc) %*************************************************************** % a*s - (a**3)*p - cx>=0 -----> sh():=sqrt(ch()**2 - 1) cosh(a*s - (a**3)*p - cx):= (2/a)*1/x; sinh(a*s - (a**3)*p - cx):= sqrt(cosh(a*s - (a**3)*p - cx)**2 - 1); ttx; ttu; nnx; nnu; kaptt; genx; genu; %---- generator z drugiego liscia, a*s - (a**3)*p - cx<0 gen2x:=-genx; gen2u:=genu; eeex:=1; eeeu:=ttu/ttx; %----------commutators---------------- procedure agen(fff); rrr:=genx*df(fff,x) + genu*df(fff,u); procedure agen2(fff); rrr:=gen2x*df(fff,x) + gen2u*df(fff,u); procedure att(fff); rrr:=ttx*df(fff,x) + ttu*df(fff,u); procedure ann(fff); rrr:=nnx*df(fff,x) + nnu*df(fff,u); procedure aeee(fff); rrr:=eeex*df(fff,x) + eeeu*df(fff,u); %---------------------- agen(eeex) - aeee(genx); agen(eeeu) - aeee(genu); agen(ttx) - att(genx); agen(ttu) - att(genu); agen2(ttx) - att(gen2x); agen2(ttu) - att(gen2u); ann(ttx) - att(nnx); ann(ttu) - att(nnu); %---------- pde ---------------- agen(kaptt); att(kaptt); c1*att(kaptt); c2*kaptt**2; att(att(c2)); agen(kaptt) - c1*att(kaptt) - c2*kaptt**2 - att(att(c2)); %*************************************************************** % x,u coordinates (drugi lisc) %*************************************************************** % a*s - (a**3)*p - cx<0 -----> sh():=-sqrt(ch()**2 - 1) cosh(a*s - (a**3)*p - cx):= (2/a)*1/x; sinh(a*s - (a**3)*p - cx):= -sqrt(cosh(a*s - (a**3)*p - cx)**2 - 1); ttx; ttu; nnx; nnu; kaptt; genx; genu; %---- generator z pierwszego liscia, a*s - (a**3)*p - cx>=0 gen1x:=-genx; gen1u:=genu; eeex:=1; eeeu:=ttu/ttx; %----------commutators---------------- procedure agen(fff); rrr:=genx*df(fff,x) + genu*df(fff,u); procedure agen1(fff); rrr:=gen1x*df(fff,x) + gen1u*df(fff,u); procedure att(fff); rrr:=ttx*df(fff,x) + ttu*df(fff,u); procedure ann(fff); rrr:=nnx*df(fff,x) + nnu*df(fff,u); procedure aeee(fff); rrr:=eeex*df(fff,x) + eeeu*df(fff,u); %---------------------- agen(eeex) - aeee(genx); agen(eeeu) - aeee(genu); agen(ttx) - att(genx); agen(ttu) - att(genu); agen1(ttx) - att(gen1x); agen1(ttu) - att(gen1u); ann(ttx) - att(nnx); ann(ttu) - att(nnu); %---------- pde ---------------- agen(kaptt); att(kaptt); c1*att(kaptt); c2*kaptt**2; att(att(c2)); agen(kaptt) - c1*att(kaptt) - c2*kaptt**2 - att(att(c2)); %************************************************************ shut kk; bye; end; shut kk; bye; end;