

Review of RESIK X-ray spectra database

J. Sylwester, M. Kowaliński, B. Sylwester, A. Kepa Space Research Centre, PAS Wrocław

RESIK operated aboard CORONAS-F Russian satellite

2002/04/01 - 2002/05/01

Launched 31 July 2001, polar orbit, 95min, ~550 km semi-Sunsynchronous

S/C nights & days

polar Sunsynchronous orbit for most of the time nights interrupt the observations, but detectors were on Except the high background particles regions

Position on the

Dispersion

planes

RESIK

complicated wignietting pattern

the XIIth Hvar Astrophysical Colloqium September 3 -7, 2012 the 40th anniversary of Hvar Observatory

...

0

Рентгеновский Спектрометр с Изогнутыми Кристаллами Bragg law: $k\lambda = 2d \sin\Theta$ RESIK is the lowest fluorescence spectrometer

Measures spectra in the range: ~ 3.3 Å ÷ 6.1 Å, instantaneously in all λ

POLISH ACADEM OF SCIENCE SPACE RESEARCI CENTRE

Key people: Len Culhane, George Doschek V.D. Kuznetsov, Jim Lang, R.D. Bentley

Identification of new satellite lines

The database:

http://www.cbk.pan.wroc.pl/experiments/resik/RESIK_Level2/index.html

RESIK data - level 2

README

resik_read_fits_fast.pro - program for reading RESIK fits files (8 kB)

Date	GOES class	Location	Date file created		
↓ ↑	↓ ↑	↓ ↑ ← →	↓ ↑		
15 April 2002 (max ~ 03:55 UT)	M1.2	S15W01	9 Dec. 2010		
26 July 2002 (max ~ 18:29 UT)	C9.5	S22E17	13 Mar. 2012		
3 August 2002 (max ~ 19:07 UT)	X1.0	S16W87	4 Jun. 2008		
10 September 2002 (max ~ 14:56 UT)	M2.9	S10E43	24 Apr. 2008		
20 September 2002 (max ~ 09:28 UT)	M1.8	S24E75	12 Apr. 2012		
29 September 2002 (max ~ 06:39 UT)	M2.6	N10E20	20 Mar. 2008		
04 October 2002 (max ~ 05:38 UT)	M4.0	S19W09	22 Mar. 2008		
12 November 2002 (max ~ 07:49 UT)	C5.3	S12W66	24 Nov. 2009		

30 flares, ~4000 spectra, AR: ~300 spectra

Example summary plots

Example summary plots

RESIK average abundances compared with other determinations

Element & FIP eV	A _{phot.}	A _{coronal}	A _{RESIK}	References
K 4.34	5.03 ± 0.09	5.67	5.86 ± 0.20	ApJ, 710, 2010
Ar 15.76	$6.40 \pm 0.13^*$	6.58	6.45 ± 0.07	ApJ, 720, 2010
CI 12.97	5.50 ± 0.30	5.50	5.75 ± 0.26	ApJ, 738, 2011
S 10.36	7.12 ± 0.03	7.27	7.16 ± 0.17	ApJ, 751, 2012
Si 8.15	7.51 ± 0.09	8.10	7.91 ± 0.15	Sol. Phys., submitted

A_{phot.} from Asplund et al. Ann. Rev. Astron. Astrophys. 2009. 47:481–522,
 A_{coronal} from CHIANTI, extended coronal, mostly Feldman, U., Mandelbaum, P., Seely, J.L., Doschek, G.A., Gursky H., 1992, ApJSS, 81, 387

* from proxies

DEM evolution for SOL2002-12-26T08:30 Barbara, Tomek Mrozek

Fitting the spectra in DEM

RHESSI for SOL2002-12-26T08:30

If we consider the total EM of the hot component to be contained in the RHESSI bright kernel, this allows for the estimatation of the **density** of hot **glg**sma. **RESIK & RHESSI**

Diagnostics of non-thermal distributions Elena, Alena

The nonthermal analysis of RESIK spectra has shown that the largest deviations of the plasma electron distribution from Maxwellian appeared during the impulsive phase of the flare. The decay phase spectra had an almost isothermal character..

The heritage - ADS title:RESIK

Selected and retrieved 37 abstracts. Total citations: 90

_								
#	Bibcode Authors	Cites Title	Date	Lis Ac	st of Link cess Con	<u>ts</u> trol Help		
1	2010A&A514A82S Sylwester, B.; Sylwester, J.; Phillips, K. J. H.	12.000 Soft X-ray	05/2010 coronal spectra	<u>A</u> a at low a	<u>E</u> <u>F</u> ctivity leve	<u>X</u> ds observed	<u>R</u> C by RESIK	<u>U</u>
2	 <u>2007A&A462323C</u> Chifor, C.; Del Zanna, G.; Mason, H. E.; Sylwester, J.; Sylwester, B.; Phillips, K. J. H. 	10.000 A benchma	01/2007 rk study for CF	<u>A</u> HANTI ba	<u>E</u> <u>F</u> ased on R	ESIK solar f	$\underline{\mathbb{R}}$ $\underline{\mathbb{C}}$ lare spectra	<u>U</u>
3	 <u>2008A&A488311D</u> Dzifčáková, E.; Kulinová, A.; Chifor, C.; Mason, H. E.; Del Zanna, G.; Sylwester, J.; Sylwester, B. 	9.000 Nonthermal	09/2008 l and thermal di	<u>A</u> agnostics	<u>E</u> <u>F</u> of a solar	flare observ	$\underline{\mathbb{R}}$ $\underline{\mathbb{C}}$ wed with RESIK and RHI	<u>U</u> ESSI
4	<u>2008ApJ681L.117S</u> Sylwester, J.; Sylwester, B.; Phillips, K. J. H.	7.000 RESIK Obs	07/2008 ervations of He	<u>A</u> lium-like	<u>E</u> <u>F</u> Argon X-I	X Ray Line En	<u>R</u> C nission in Solar Flares	<u>U</u>
5	2010ApJ711179P Phillips, K. J. H.; Sylwester, J.; Sylwester, B.; Kuznetsov, V. D.	6.000 The Solar X	03/2010 K-ray Continuur	<u>A</u> m Measur	E F ed by RES	SIK X	<u>R</u> <u>C</u>	<u>U</u>
6	 <u>2003ESASP.535733S</u> Sylwester, J.; Sylwester, B.; Culhane, J. L.; Doschek, G. A.; Oraevsky, V. N.; Phillips, K. J. H. 	6.000 Patterns of	09/2003 X-ray line emis	<u>A</u> ssion varia	<u>F</u> (ability as o	bserved by	<u>T</u> <u>C</u> the RESIK Bragg spectr	ometer
7	2011A&A533A81K Kulinová, A.; Kašparová, J.; Dzifčáková, E.; Sylwester, J.; Sylwester, B.; Karlický, M.	5.000 Diagnostics	09/2011 of non-therma	<u>A</u> 1 distributi	<u>E</u> <u>F</u> ions in sol	\underline{X} ar flare spec	<u>R</u> <u>C</u> etra observed by RESIK	U and RHESSI
8	<u>2010ApJ720.1721S</u> Sylwester, J.; Sylwester, B.; Phillips, K. J. H.; Kuznetsov, V. D.	5.000 A Solar Spe	09/2010 ectroscopic Abs	<u>A</u> solute Abu	<u>E</u> <u>F</u> ndance of	X Argon from	<u>R</u> <u>C</u> n RESIK	U

The main effects that contaminate raw spectra:

- Fluorescence: crystal (Si Kα 1.75 keV), two longer-wavelenght channels
- Fixed pattern structure (notches) due to the ADC converter in position encoding (depends on HV and ADS values)
- Orbital background:
- Non-solar X-ray illumination
- Auroral Oval and South Atlantic Anomaly

Optical and X-ray nights

12:00

1450V

L4L9V

Start Time (10-Feb-03 07:04:48)

08:00

358V

sources takes place earlier/later than in the visible range as the absorption is complete at heights ~100 -150 km

Occultation of X-ray

Summed PHA - analysis

Non-solar X-rays

Auroras

How to recognize X-ray aurora

Equatorial locations

Polar locations

Understanding amplitude signal

The statistical uncertainties in the number of ion-electron pairs formed and gas gain result in a pulse amplitude distribution where photons of constant energy are absorbed. Detector resolution, Γ, (in eV) is the full width at half maximum of its pulse amplitude distribution, given empirically b

Components of the spectral signal

Ω

Ω

eHeroes What has changed recently

- New more powerful server is available (128 GB RAM)
- Full set of primary reduced RESIK data can be accessed (30 GB):
 - ~2 mln DGI for signal pulse-height analysis
 - 0.2-10 keV spectra in 31 bins,
 - Particle signal 1 bin
 - DGI, 10 & 2 s

~1.3 mln individual spectra, 60 000 with good settings

Dynamic spectra collection

Dynamic spectra collection 2

Optimum settings 60k spectra

Uninvestigated areas

- Magnetospheric studies
 - Distribution of particles on L shells
 - Study of geomagnetic storms
 - SAA vriability
- Solar studies
 - Reduction of all good spectra to Level2 (90%)
 - Contribution of higher reflection orders
 - Non-maxwellian distribution diagnostics
- Impact on electronics
 - Investigation of all glitches
 - Temperature distribution inside the instrument

Radiation environment

2002/04/01 - 2002/05/01

on its circular ~500 km orbit inclined at ~83 deg, polar radiation ovals filled with energetic particles are being crossed 4 times each orbital period SAA is encountered 6 times a day – best seen on PIN sensor

ber 3 -7, 2012 the 40th anniversary of Hvar Observatory

Higher Orders

Conclusions

- Access to Resik full database has still a lot of new discoveries to offer
- We are looking for a talented people to invite to work in our group
- We are in a process of converting the data into FITS format and contribute them to the SODA database (SOTERIA)
- Right now, we can provide the IDL *.sav large file with descriptions (30 GB)

- Altitude & attitude, PHA, spectra, Times JD

Thank you !

All interested people, please contact me js@cbk.pan.wroc.pl

2002 8 24 1:12 X3.1 4.6e-004 S02W81 -16.02 +

Geometry optimization

Double, position sensitive detector: Yohkoh BCS type

Fig. 4. An exploded view of the double proportional counter. A single one-dimensional position readout pattern is common to both halves. Each half detector registers X-rays from a single crystal and has two connected anode wires. The two halves are electrically separated by a screen of cathode wires. The top and bottom assemblies are sealed together by electron beam welding.

Bin No = $\frac{W_1}{W_1 + W_2}$

Offsets from line positions

Instrumental width: detector position resolution 0.16 for Fe55 0.29 for Si $\lambda/\Delta\lambda \sim 1000$

 $\Gamma \cong 2.35 \sqrt{1.7 \varepsilon E}$

Due to ADS

In order to obtain realistic look-up "relation" we should sum-up over those uu relations which are of interest for a given set of ADS settings used. The relation is dependent on: HV & ADS

FPS: Monte-Carlo model

"Uniform illumination" q=<const

Calibrations

 Laboratory - at RAL Yohkoh BCS chamber at MSSL some detector rests In-flight Detector ageing (position of Fe55) 5.9 keV peak against the 32 bit amplitude scale - ADS (amplitude discriminator settings)

Instant measurements at all wavelengths no fluorescence from germanium Use Cylindrically Bent Crystals Use Position Sensing Detector • Bragg's Law: $\lambda = 2d \sin(\theta)$ - Must set Crystal angles properly Spacecraft pointing affects wavelength X-ray source position affects wavelength • $\Delta \lambda = 2d \cos(\theta) \Delta \theta$

How it works

RESIK in RAL Chamber

-

RESIK Alignment

some of RESIK People

a****

R.

2 2 2 3

RESIK Geometry (IDL routine)

Accuracy of position determination

Ldz(1) Hidden W&W length

The most unfortunate RESIK discovery

Energy calibration of ADS and PHA

constant flux

Observed pattern of count-rate energy shift dependence

PHA ADS

How to subtract fluorescence

- Determine the actual flux from PHA peak
- Determine count rate in detector A & B
- Find countrate dependent conversion between PHA scale and ADS scales
- Calculate probabilities for fluorescence and solar signal in-window proportions
- apply appropriate fluo subtraction profiles
- generate and correct for FPS

Detector saturation for X-class events

Pattern of position encoding

The region along the active length of the position encoding is zoomed electronically at the cost of edge, hidden bins lengths

Background

- Orbital, depending on the position relative to Earth magnetic dipole
- Due to auroral, in situ X-ray emission
- Due to non-solar X-ray sources Sco-X1
- Due to energetic particle enriched regions: SAA and Polar Ovals

7. Apr 2003, Dump: 09417_1

Interval selected: 17.5-17.8

"Astrophysical" X-rays

How to check for good RESIK observations

Use RESIN package

Summary of spectra reduction

- Semiautomatic is possible for "good" ADS settings period using RESIN IDL package: 1st January 2003 – 13 March 2003 (mid-May)
- Barbara made selection of ~1000 spectral intervals from this period (~10%) of the data available – statistical analysis has been done
- Individual events have to be analysed "by hand" selecting appropriate E_{ADS_boundary} interactively
 - done on request 1 full day work/event ~10 flares analysed yet
 - simple_resik IDL routine demo on selected event can be run at this Workshop

Absolute K & Cl abundances

work still to be done

Find

- detailed relationship:
 - count rate→discriminator energy→ fluorescence profile
- incorporate fluo subtraction within the code.
- Incorporate results of ground calibration
- Recalibrate 85% of the observations
- Auroral X-rays..., Sco-X1
- "Backward" calibration (cts/bin→phot/Å/cm²/s) depends on highly non-linear relationships (channels 3 & 4)

Proper treatment → forward direction:
 Model (DEM+ geometry+ beams+...) →
instant input spectrum → predicted cts/bin→
comparison of observed & predicted → improved model

Conclusions

- Do not lose confidence with RESIK with all described problems, it appears to be the "best calibrated" Bragg spectrometer flown!
- A big "discovery potential" exists, as will be shown later-on → each flare or data set we looked into brought oh-achs!
- Systematic studies over entire database are possible for the Ar XVII (channel 2) right now as this channel settings did not changed over the entire active life of RESIK (except for the calibration)