PRESENT STATUS OF RESEARCH AT THE WROCŁAW SOLAR PHYSICS DIVISION OF SPACE RESEARCH CENTRE PAS

Janusz Sylwester
Outline

• History & heritage
• Main contributions to solar physics
• Present team, science interests and collaborations
• Experiments we are working on
• Awards
• Possible collaborations
The past: political opportunities and Founders

• Intercosmos (1967) – no launch payments

Kapustin Yar
Sounding rockets
7 launches

1970
1971
1977
1979
1980
1981
1983
1984

Plesetsk
Orbital missions launches

1994
Coronas-I
1995
Interball-Tail
2001
Coronas-F
2009
Coronas-Photon
The past:
Founders

• The Professors:

Stefan Piotrowski (1910–85), supported the development of Wroclaw group remotely, as Head of Astronomical Division, PAS, Warsaw, where the group was initially assigned.

Prof. Jerzy Jakimiec – overlooked from the beginning (30 years) the scientific aspects of the program.

Dr. Zbigniew Kordylewski – was (and is) responsible for the hardware development over more than 35 years.

Prof. Antoni Opolski took charge of the developing Laboratory in 70-ties.

Prof. Stanislaw Grzedzielski and Prof. Zbigniew Klos, as Directors of Space Research Centre, of which the Solar Physics Division is now a part looked with an interest to the group development.

Jan Mergentaler
(1901-1995, Lwów-Wroclaw)
First Polish (and INTERCOSMOS) space experiment 28 November 1970

At Kapustin Yar, early morning h = ~500 km, 10 min in space (around 05:32 UT)
Dr. Zbigniew Kordylewski in 1971, presenting Polish part of Vertical-1 payload, after recovery
The Be 50 μm and Al 6 μm filter images represent emissions from the hotter and cooler plasma. The "filter ratio" technique allowed to determine the temperature structure within individual active regions. The spatial resolution in the images is rather low (1 arcmin), typical for pin-hole technique.
Spectroscopic evidence of changing abundance in flares (since 1984)

L/c is sensitive to elemental abundance $L \sim A_{\text{El}}$; $c \sim$ hydrogen and helium

Sylwester et al., 1984, Nature, 310, 665
New experience - new designs

- X-ray Dopplerometer (~1980): absolute measurements of line shifts

RDR – Rocket Dopplerometer flown aboard Vertical-11 sounding rocket
Made in one year, launched in 1983
Satellite dopplerometer results CORONAS-F
25 Aug 2001 3B/X5.3
The Sequence of left & right scans

25 August 2001 #4 Ca XIX Spectra (left)

25 August 2001 #4 Ca XIX Spectra (right)
Spectra recorded nearly simultaneously in Channels #1 and #4 of Diogeness during the maximum phase of X5.3 flare on 25 Aug. 2001. The scanning in both channels is made in the opposite wavelength sense. Thus the intercombination and forbidden lines comprising the Ca XIX triplet are seen on the opposite sides of the presented range (recorded 20 s apart in time).
Velocities: entire spectra shifted

Velocities as determined for the resonance \(w \) and forbidden lines \(z \) of the Ca XIX triplet. The forbidden line is blended with a strong dielectronic satellite line \(j \) which might account for slightly different pattern of behaviour later in the flare decay.

Accuracy: ± 5 km/s for unblended \(w \) line
Bragg spectrometer: $k\lambda = 2d \sin \Theta$

Рентгеновский Спектрометр с Изогнутыми Кристаллами

Measures spectra in range: 0.335 nm – 0.610 nm, instantly in all λ
What we see - page from Catalogue (2000 pages)

Flare positions & dispersion plane
PHAs
- spectrum #4
 - ADS = 112 - 165
- spectrum #3
 - ADS = 80 - 165
- spectrum #2
 - ADS = 80 - 165
- spectrum #1
 - ADS = 80 - 165

S/C nights
Spectra normalized to maximum in each channel 4.96 - 6.09 Å
4.31 - 4.89 Å
3.82 - 4.33 Å
3.37 - 3.88 Å

Orbit & particles ‘electrons PHA’

engineering
for publication
SphinX
Polish concept, design & manufacture

Measures the X-ray emission of the Sun in the 85 – 15 keV band with unprecedented
- Time resolution ~0.00001 s
- Sensitivity 100 x better than GOES (NOAA) XRM – the standard for 30+years
- Energy resolution 3x RHESSI (NASA)

Aimed to see Non-AR level of emission
GOES X class range to be extended down

C = 10^{-6} W/m2

B = 10^{-7} W/m2

A = 10^{-8} W/m2

S = 10^{-9} W/m2

Q = 10^{-10} W/m2

SphinX detection threshold

No flare activity reported by GOES below
Main contributions to solar physics

dodac referencj!

• Discovery of Ca abundance between flares (SMM spectra, 1984)
• First determinations of absolute the Ar abundances in the Sun (RESIK, 2010)
• Detection of X-ray Doppler-shifted lines from multi-million K plasmas (Diogeness, 2003)
• Study of Si, S, Ar & K abundances in flares (RESIK, 2013)
• Determination of non-active –X-ray solar luminosity (SphinX, 2010)
• Introduction of new X-ray flare classes (sphinX, 2010)
• Recovery of DEM pattern for flares (2015, next talk)
SPD SRC Awards

• PAS – RAS International Award 2011
 - IZMIRAN
 - FIAN
 - SRC PAS

• PAS-NANU International Award 2014,
 Radioastronomical Institut NANU
 DrS. O. W. Dudnik
 Mgr. E. W. Kurbatov
 SRC PAS

 Janusz Sylwester
 Dr. Szymon Gburek
 Dr. inż. Mirosław Kowaliński
 Mgr. inż. Piotr Podgórski
Present team, science interests and collaborations

- The SPD Team now, one of 5 SRC Divisions. In charge Dr. Mirek Kowaliński
 - 8 scientists, 4 PhD students, 7 engineers, physicist
 - Cleanroom, cooled vacuum chambers, X-ray sources & optics, various support equipment
- Data reduction & interpretation in progress
 - RESIK & Diogeness Spectra
 - RESIK particle signal
 - SMM BCS old spectra
- Science interests
 - AR and flare Plasma diagnostics (T, EM, DEM), spectral synthesis
 - Abundance determinations (next talk)
 - Particle background
 - SXR & HXR imaging
- Main collaborating people
 - Kenneth Phillips (X-ray spectroscopy)
 - Oleksyi Dudnik (Particles in magnetosphere)
 - Elena Dzifcakova (Non-Maxwellian plasmas), ISSI collaboration
Experiments we are working on

- **STIX** on Solar Orbiter (phases C, D), ESA
- **PROBA-3**, ESA
- **Interhelioprobe 1 & 2** (Roskosmos)
- **SolpeX** for ISS (FIAN)
- **CubIXSS** with USA
- **SphinX-NG** – looking for the opportunities...
 possibly Ukraine Dr. Kowalinski will describe this nano-satellite in details
STIX: The Spectrometer Telescope for Imaging X-rays (fixed)
ESA: Solar Orbiter, 2018

http://sci.esa.int/solar-orbiter/51217-instruments/

- Understanding the acceleration of electrons at the Sun and their transport into interplanetary space
- Determining the magnetic connection of the Solar Orbiter back to the Sun

Polish involvement: 30%, second after Switzerland, IDPU, EGSE, Data simulator, interface to spacecraft (talk of Dr. Kowaliński)
STIX provides imaging spectroscopy of solar X-ray emissions with unprecedented spatial resolution and sensitivity near perihelion.

STIX is based on a Fourier-transform imaging technique using:
- An imager with 32 subcollimators,
- An spectrometer with 32 CdTe X-ray detectors, one behind each subcollimator.

STIX parameters:
- Energy range: 4-150 keV
- Effective area: 6 cm²
- Field of view: 2°
- Finest angular resolution: 7 arcsec
- Image position accuracy: 4 arcsec
- Energy resolution (FWHM):
 - 1 keV at 6 keV
 - 15 keV at 150 keV
- Time resolution (stat limited): ≥ 0.1 s

Mass: 5 kg
Power: 4 W
Volume: 76 × 22 × 22 cm³
Temperature:
- Feedthrough: +270°C
- Spacecraft: +50°C
- CdTe Detectors: −20°C
Proba-3 is ESA’s – and the world’s – first precision formation flying mission. A pair of satellites will fly together maintaining a fixed configuration as a ‘large rigid structure’ in space to prove formation flying technologies.

The paired satellites will together form a 150-m long solar coronagraph to study the Sun’s faint corona closer to the solar rim than has ever before been achieved.
Proba-3 cd

- Poland shares ~30% of the mission cost hardware through contracts with ESA (Warsaw)
- Science groups are located in Wroclaw SPD-SRC PAS (3 people) and University Astronomical Institute (3 people)

Coronagraph spacecraft 340 kg;
Occulter spacecraft 200 kg
High Earth orbit, 19.7 hours orbital period, 60 530 km apogee, 600 km perigee
SolpeX for ISS, to be placed on new NAUKA Russian module ~2018

- A part of KORTES under construction at FIAN
- First Bragg solar polarimeter
- New concept of fast-rotating drum flat crystal spectrometer
 - Pin-hole imager- will provide location of the source on the disk
 - ISS offers a chance to test these concepts
CubIXSS 6U nanosatellite collaboration with SwRI, LASP & GSFC

revolutionary X-ray observations of the high temperature corona. These observations will allow us to address fundamental questions related to the physics of magnetic reconnection and particle acceleration, the heating of the solar corona, and the coupling of the Sun's radiative output to the Earth's upper atmosphere. With CubIXSS we will:

- Quantify the evolution of thermal and non-thermal emission during solar flares;
- Constrain theories of coronal heating by measuring the distribution of high temperature plasma in the non-flaring corona;
- Understand the flow of mass and energy into the corona by determining the composition of the solar upper atmosphere for both quiescent and impulsively heated loops; and
- Measure the solar irradiance and its variability at soft X-ray wavelengths and model its impact on the Earth's ionosphere and thermosphere.

60 cm x 20 cm x 10 cm, 8 kg, 20 W, - SASS (0.5-100 keV), MOXSI (0.12-10 keV)
Chemical composition in X-rays

Dr. Oleksiy Dudnik presentation

Determination of Mg, Al, Si, S, Cl, Ar, K, Ca, Fe & Ni coronal abundances

- Studies of DEM plasma distribution in AR & Flares
- Detection of Non-Maxwellian plasmas
- Spectra of particle environment, e, p, He-O
ChemiX spectra

First order reflection

Wavelength [Å]

[cts s⁻¹ bin⁻¹]

Dopplerometer

15th UKRAINIAN CONFERENCE ON SPACE RESEARCH

ODESA, UKRAINE: August 24–28, 2015
We are looking for collaborations

THANK YOU!