Near-Earth Particle Environment as Observed by

CORONAS-F, CORONAS-PHOTON and PROBA2

Satellites

Szymon Gburek

Space Research Centre

Polish Academy of Sciences

Solar Physics Division

51-622 Wrocław, ul. Kopernika 11, Poland

SRC-PAS

Involved eHEROES partners SRC-PAS, LPI, ROB

Satellites and periods of observations

SATELLITE	CORONAS-F	CORONAS-Photon	PROBA2	
Mission duration	31.08.2001– 05.12.2005	31.01-2009 – 30.11.2009	02.11.2009 - Present	
LEO Orbit height [km]	550/500	575/550	728	
Orbit inclination angle [deg]	82.5	82.5	98.3	
Initial orbital period [min]	95	96	100	

All spacecrafts on LEO, high inclination orbits

Mission lifetimes of CORONAS-F, CORONAS-Photon, PROBA2 satellites over solar activity cycle

Instruments

Instrument name	Short name	Satellite
SPRIT	SPRIT	CORONAS-F
(Zhitnik et al. 2002),		
Dlagnostics Of Global ENErgy Sources and Sinks	DIOGENESS	CORONAS-F
(Płocieniak et al., 2002; Siarkowski et al., 2002),		
REntgenovsky Spektrometr s Izognutymi Kristalami	RESIK	CORONAS-F
(Sylwester et al., 2005)		
TElescopic Spectroheligraphic Imaging System telescope	TESIS	CORONAS-
(Kuzin et al., 2011)		PHOION
Solar Photometer in X-rays	SphinX	CORONAS-
(Sylwester et al., 2008; Gburek et al., 2013)		PHOTON
The Sun Watcher with Active Pixel Sensor and Image Processing	SWAP	PROBA2
(Halain et al, 2010; Halain et al, 2013; Seaton et al, 2013)		
Lyman-Alpha Radiometer	LYRA	PROBA2
(Dominique et al., 2013)		

All instruments for observations of the Sun i X and EUV rays

Main components of Earth particle environment at LEO orbit

- Particles trapped in Earth radiation belts
- Transient events in solar wind (particles accelerated in flares and by coronal mass ejections)
- Fluxes of Galactic Cosmic Rays

The total radiation flux, as well as relative contributions of its components, depend on the position in orbit and vary with the level of the solar activity.

These particle fluxes disturb the measurements provided by on-board instruments, decrease a lifetime of sensors and may be a cause of sudden break-out.

Important regions are South Atlantic Anomaly and polar caps.

Fluxes of electrons and protons in Earth particle environments

Examples of particle data obtained from different instruments

RESIK/CORONAS-F

SphinX/CORONAS-PHOTON

SWAP/PROBA2

SAA shift

Comparison of the SWAP map to the SPENVIS generated maps reveals westward shift of the SAA.

This is also seen in other instrument maps.

SRB, NRB - southern and northern portion of radiation belts.

SAA - South Atlantic Anomaly.

Particle signal in polar caps is similar in intensity to equatorial regions.

Transient particle events as observed by RESIK

			ASSOCIATED CIME, TEARE, AND ACTIVE REGION				
Start	Maximum	Proton Flux pfu @ >10 MeV	CME	Maximum	Importance	Location	NOAA SEC AR
Nov 04/1705	Nov 06/0215	31 700	halo /04 1635	Nov 04/1620	X1/3B	N06W18	9684
Nov 19/1230	Nov 20/0010	34	halo /17 0530	Nov 17/0525	M2/1N	S13E42	9704
Nov 22/2320	Nov 24/0555	18 900	halo /22 2330	Nov 22/2330	M9/2N	S15W34	9704

RESIK particle environment during quiet period 13-19 Nov 2001

Kp < 4

RESIK particle environment during disturbed period 13-19 Nov 2001

max Kp = 9, SEP event

Comparison of RESIK particle observations during quiet and perturbed magnetospheric conditions

Quiet period 13-19 Nov 2001 Disturbed period 03-09 Nov 2001

Galactic Cosmic Rays

Particular event observed on 13 January 2010

May be of GCR origin

SWAP APS detector was not damaged by this event

Halain et al., 2011, First light of SWAP on-board PROBA2, Proceedings of the SPIE, Volume 7732, article id. 77320P, 11 pp. 2010, DOI: 10.1117/12.857979

SphinX particle observations during quiet magnetosphere

090221_020549_051436

Start Time (21-Feb-09 02:05:49)

Comparison of particle observations with AE-8 and AP-8 models

Particle observations

Protons AP-8

The spatial distribution of particle data differs from that predicted by AE-8 and AP-8 models due to enhancements produced by transient effects.

CONCLUSIONS

Identified particle contributions to the data have typically forms of spiky structures (and tracks for pixelized detectors) for all instruments.

This signal may be caused by primary energetic particles on spacecraft orbits and secondary particles produced in instrument/satellite construction elements.

All instruments saw/see particle signal in SAA.

Shape of SAA is different in maps obtained from observations (different detectors, shielding).

Comparison the particle map to the SPENVIS-generated maps reveals shift of SAA. It is seen in maps from all instrument.

For quiet magnetospheric conditions the instrument fall into two categories: 1) TESIS, LYRA, SWAP – do not see/saw additional contribution to the signal in auroral zones, 2) SPIRIT, SphinX, RESIK and DIOGENESS saw additional contribution in auroral zones.

All instruments see some additional contribution to the signal in auroral zones during magnetospheric disturbances.

Obtained data can be useful in studies of transient component of the Earth particle environment which is not available in AE-8 and AP-8 its models.

All the instruments appeared robust against particle during their missions. No particle caused damages were observed.

THANK YOU

More about particle effects on LYRA by Thanassis Katsiyannis on January 9