
Night sky photometry with amateur-grade digital cameras.

Mrozek, T.^{1,2}, Gronkiewicz, D.², Kolomanski, S.², Steslicki, M.²

1. Solar Physics Division, Space Research Centre PAS

2. Astronomical Institute, University of Wrocław

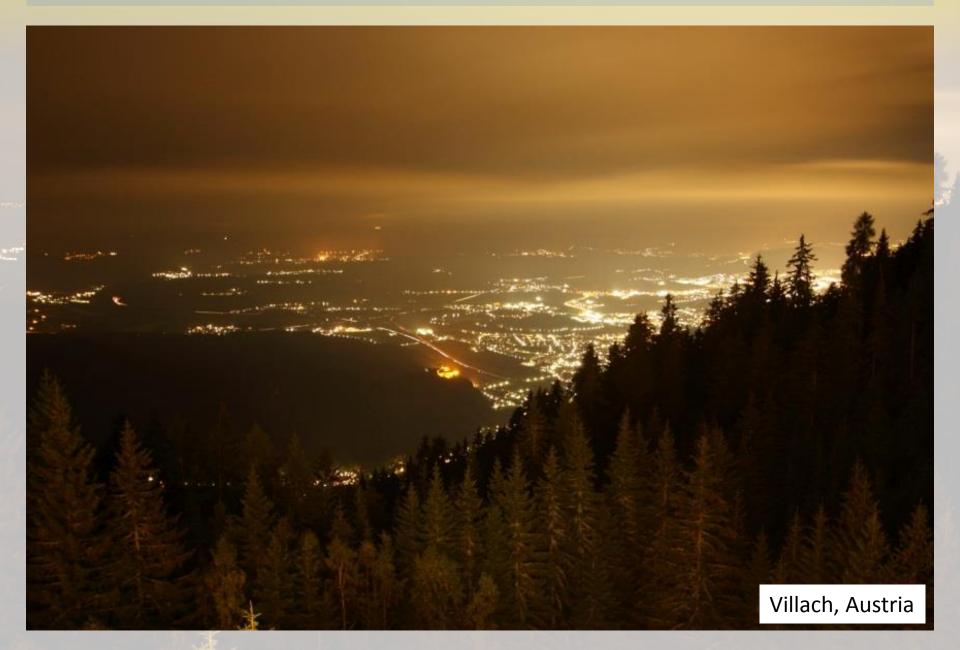
Dark sky protection & education in the Izera Mountains

Dark sky protection & education in the Izera Mountains

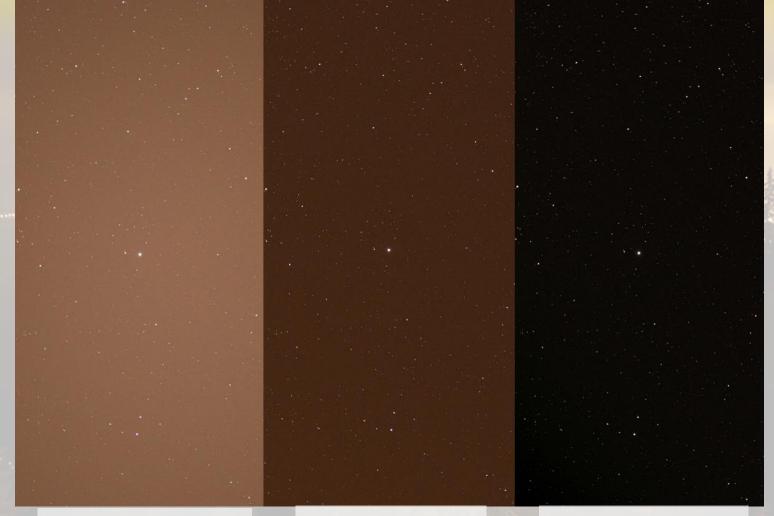
WEDNESDAY, AUGUST 12, 2015

5:40 PM - 6:00 PM Room 316B

FM2.6.07. Dark Sky Protection and Education - Izera Dark Sky Park Arkadiusz Berlicki; Sylwester Kolomanski; Tomasz Mrozek; Grzegorz Zakowicz


THURSDAY, AUGUST 13, 2015

8:45 AM - 9:00 AM Room 316B


Astronomy Education Under Dark Skies Joanna C. Molenda-Zakowicz, Grzegorz Zakowicz, Sylwester Kolomanski, Tomasz Mrozek, et al.

Need for dark sky measurements

Let's take a photo of a night sky.

Astronomical Institute UWr, 4 km from Wrocław's center Jelcz-Laskowice (population 15k), 20 km from Wrocław's center Białków observatory, 60 km from Wrocław's center

Method for (almost) everyone

Equipment and assumptions:

- 1. Camera capable to register RAW files
- 2. Manual exposure and focus
- 3. Tripod.
- 4. Computer with cheap/free software
- 5. simplicity, but still valuable measurements
- 6. free from detector aging effects (SQMs are calibrated only once)

First measurements (February 20th, 2015 r., Białków)

Białków Observatory of Astronomical Institute, University of Wrocław (60 km from Wrocław's center)

Equipment

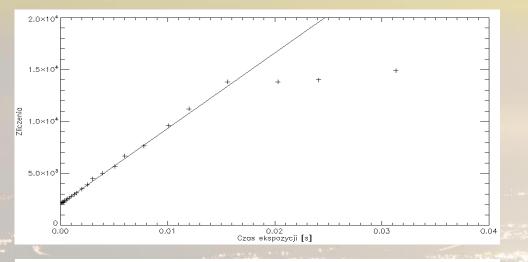
Canon 1100D + kit lens 18-55
Canon 450D modified + kit lens 18-55
Canon 7D + 60 mm lens
Nikon D90 + kit lens 18-105
Canon Power Shot S2 IS (with Canon Hacker's Development Kit)

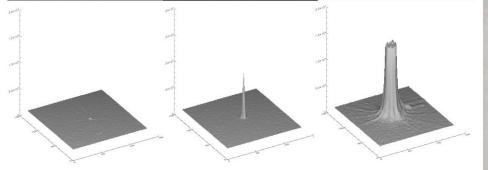
SQM-LU

All-sky camera

Methodology

- Estimate DN range of linear response
- Take 5-10 exposures of 5 and 20 seconds
- Take dark and flat images
- Reduce images
- Choose stars for standardization (on 5 s images)
- Calculate standardization coefficients
- Estimate instrumental background
- Calculate standard brightness of sky background
- Compare with other cameras/lenses/instruments





The methodology was tested with several groups of secondary school students, teachers, and amateur astronomers during our various astronomical meetings in the Izera Mountains.

Range of linear response

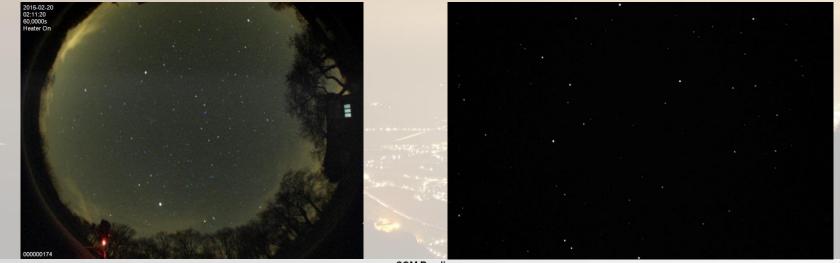
Excellent stand-alone excercise which helps to start learning how to take a picture? what is exposure time? what is saturation? How my camera works? etc.

Good starting point to learn software (we used IRIS)

Prepare artificial point source.

Take frames with various exposure times.

Plot DN against exposure time.


Estimate, roughly, level of linear response and saturation level.

IRIS

An astronomical images processing software http://www.astrosurf.com/buil/us/iris/iris.htm

Capturing frames.

Images were taken during excellent conditions on February 20th, 2015. All instruments were aimed to zenith.

SQM Readings

Standardization

http://nova.astrometry.net/

With this result you can use free software (we used Stellarium) and choose several stars for standardization.

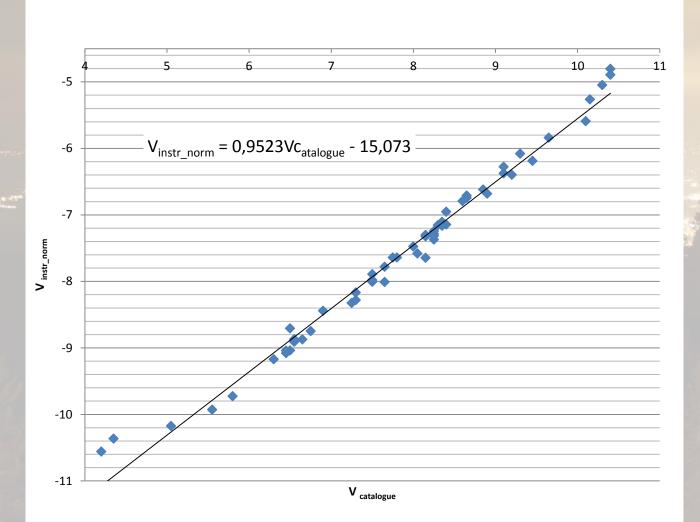
Images > IMG_7617.JPG

Nearby Images (View All)

Submitted by anonymous (1) on 2015-08-10722:38:34Z as " IMG_7617.JPG " (Submission 727761) under Attribution 3.0 Unported

Job Status

Job 1199535: Success


Calibration

	Center (RA, Dec):	(149.106, 43.752)
	Center (RA, hms):	09 ^h 56 ^m 25.539 ^s
	Center (Dec, dms):	+43° 45' 06.612"
	Size:	61.2 x 40.8
		arcmin
	Radius:	0.613 deg
	Pixel scale:	3.67 arcsec/pixel
	Orientation:	Up is 89.3
		degrees E of N
	WCS file:	wcs.fits
	New FITS image:	new-image.fits
	Reference stars nearby (RA,Dec table):	rdls.fits
	Stars detected in your images (x,y table):	axy.fits
	Correspondences between image and reference stars (table):	corr.fits
	KMZ (Google Sky):	image.kmz

Standardization. Inclination problem.

For estimation of sky brightness we have to extrapolate this relation by 10-12 orders of magnitude.

Even small errors in inclination may explode when extrapolated from 8mag to 21 mag.

Therefore we assume that inclination is 1 (it should be) and calculate only free parameter of linear fit as a difference between standard and instrumental brightness.

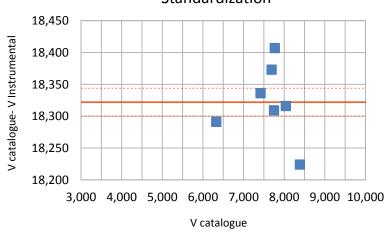
Standardization

Instrumental brightness normalized:

$$V_{inst_norm} = -2,5 \times \log\left(\frac{C_{ounts}}{t_{exp}}\right)$$

Instrumental constant:

$$b = V_{cat} - V_{inst_norm}$$


Background instrumental brightness normalized:

$$V_{bckg_inst_norm} = -2,5 \times \log\left(\frac{C_{ounts}}{t_{exp} * S}\right)$$

Background brightness standarized:

$$V_{bckg} = V_{bckg_instr_norm} + b$$

Dutput		
File Edit		
x=3148 y=1568 i=2106 Mean = 2085 75 - Median = 2085 Noise (deviation) = 37.16 Mexi = 2689 - Mini = 1597		
<pre><cr>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></cr></pre>		
tatistics		
Mean = 2090.40 Median = 2085		
Sigma =		
Max. = 5798.0 Pixel = (3226.1625)		
Min. = 1587.0 Pixel = (3407.1632)		
Max. volume = 570494443.0		
Min. volume = 0.0		
ОК		

Standardization

Results

camera	Sky brightness (mag/arcsec ²)
Canon 1100D	$21,26 \pm 0,06$
Canon 450D mod.	21,11 ± 0,06
Canon 7D	21,19 ± 0,07
Nikon D90	21,17 ± 0,06
Canon S2 IS (soft. mod.)	21,03 ± 0,06
SQM	21,43 - 21,51 (± 0,2)

Acceptable consistency of results obtained with various cameras (within 0,2 mag/arcsec²)

SQM gave systematically lower values of brightness (0,2-0,4 mag/arcsec²)

Summary

- We developed methodology for very simple, quantitative method of night sky brightness measurements based on popular DSLR and compact cameras.
- Obtained values are similar, within errors, giving a chance that this method may be used for obtaining valuable observations from huge number of observers.
- We tested methodology with secondary school students, group of teachers, and group of amateur astronomers. This helped us to simplify method by rejecting most problematic issues without significant degradation of final result.
- The method is used for built a data base of measurements within Wygasz project (J. Molenda-Zakowicz and A. Berlicki talks), and for comarison with modified Berry model.