Double counts in STIX's Caliste-SO detectors

JAROMIR BARYLAK ALEKSANDRA BARYLAK TOMASZ MROZEK MAREK STĘŚLICKI PIOTR PODGÓRSKI

SOLAR PHYSICS DIVISION SPACE RESEARCH CENTRE POLISH ACADEMY OF SCIENCES

PROGRESS ON EUV & X-RAY SPECTROSCOPY AND IMAGING II WROCŁAW – 17-19.11.2015

STIX & Caliste-SO

Caliste-SO – hybrid component integrating the sensor material and dedicated front-end electronics.

- Main parameters of STIX's
 - Energy range 4-150 keV
 - Energy resolution 1-15 keV (energy dependent)
 - Angular resolution 7 arcsec
 - Pointing accuracy 4 arcsec
 - Field of view 2°
 - Time resolution 0.1 s (statistics limited)
- Detector electronics module (DEM)
 - 32 CdTe sensors on Caliste-SO hybrids
 - Analog-to-digital converters
 - Data processing unit (IDPU)
 - Low-voltage/sensor bias power supplies

CdTe pixel detector

Passive filtering parts •

High voltage routing

Electrical SOP interface

- ASIC power supplies
- Sensor high bias voltage
- Slow control I/O
- Test injection
- Differential analog output

How does double counting will influence measured solar spectra?

Double counts

Double count - one photon simultaneously measured in more than one pixel

Two effects occur double counts:

1. Secondary photons ilumination

2. Charge sharing

Geant4 simulation

- Source:
 - Monoenergetic photons
 - Energy from 4 to 150 keV with step 0.1
- Active volume:
 - whole cristal
- Photon beam covers entire detector area
- List of physics process:
 - Photons
 - Photoelectric effect
 - Compton scattering
 - Gamma conversion
 - Rayleigh scattering

- Electrons
 - Multiple scattering
 - Ionization
 - Bremsstrahlung

STIX's threshold

STIX is measuring photons with energy more than 4 keV.

Hole tailing

Measured lower energies

Damage layer

Measured lower energies

$$n_0 = n_0 (1 - e^{-x/\lambda_{entrance}})$$

 n_0 – number of electrons and holes initially created, x – absorption depth $\lambda_{entrance}$ – damage layer thickness – 5 μm

1. Secondary photon ilumination

Clouds shape

- Most part of electrons energies is deposited near the end of track.
- Sum of carriers clouds is symmetrica

Charge sharing

- Initial distribution: spherically symetric, normalised Gaussian.
- The expansion of a charge cloud is governed by Fick's second law.
- Electric field perpendicular to electrodes.

Absorption depth

- We compute surface area, where double events occur, for each absorption depth.
- In next step, we divide this surface area by surface area of whole detector
 -> probability of double count.

2. Charge sharing

Particular case

- This cases are twice counted.
- We remove such cases from fluorescent double counts.

Total double counts

Thank you

jbarylak@cbk.pan.wroc.pl