

Multitemperature solar plasma diagnostics from RESIK spectra

B. Sylwester, A. Kępa , J. Sylwester Space Research Centre, PAS, Wrocław, Poland K.J.H. Phillips

Mullard Space Science Laboratory, Dorking, UK

RESIK

We present the results of differential emission measure (DEM) analysis of flaring plasma. The analysis is based on the X-ray spectra obtained with Polish-led spectrometer RESIK on Russian *CORONAS-F* satellite. RESIK is the **uncollimated** bent crystal spectrometer consisting of two double-channel X-ray spectrometers.

It was designed to observe solar coronal plasmas in four energy bands. The nominal wavelength coverage of RESIK is **3.3** Å – **6.1** Å. Recorded spectra contain many spectral lines formed in H- and He-like ions of various elements. The line and continuum is formed in hot coronal plasma from the T-range **3** MK ÷ **30** MK in various proportions for different spectral bands. This makes RESIK spectra uniquely suitable for investigations of the temperature structure of the source (DEM) as well as the plasma **elemental composition**.

Time-averaged RESIK spectrum for an C1.9 flare

The Differential Emission Measure (**DEM**)

For optically thin, multithermal plasma:

DEM characterizes the amount of plasma at various temperatures present in the source.

$$\mathsf{DEM} \equiv \Phi(T) \equiv Ne^2 \, dV/dT$$

is non-negative

 $F_i \rightarrow$ measured fluxes obtained from RESIK spectra in *i* =15 spectral bands $f_i(T) \rightarrow$ calculable theoretical emission functions for every spectral band used, CHIANTI 7.0 atomic code has been used in this respect

 $A_i \rightarrow$ assumed elemental abundance taken as constant over the source volume

DEM inversion

From reduced absolute RESIK spectra we have selected 15 narrow spectral bands embracing the most intense lines and the continuum below. We determined the time-changing fluxes in these bands for flares selected in this research. These fluxes constitute the input set for the differential emission measure (DEM) inversion $F_i \rightarrow \Phi(T)$.

The theoretical fluxes have been calculated using the CHIANTI 7.0 code (<u>http://www.chiantidatabase.org</u>) with appropriately selected plasma composition – representative (optimum) for each selected event for the elements: Ar, S, Si, and adopting coronal values (following Feldman, 1992) for other elements, except for K and Cl, for which RESIK values were used (ApJ papers). In the spectral calculations, the ionization equilibrium of Bryans, Landi & Savin (ApJ, 691, 2009) has been adopted.

For the inversion, the Withbroe-Sylwester **iterative** algorithm representing the **maximum likelihood** approach (Solar Phys., 67, 1980) has been used. The inversions have been carried out over the temperature range **3 MK - 30 MK**. 10 000 iterations were performed on each inversion run. The inversion uncertainties were determined from 100 Monte Carlo exercises, where the input fluxes for time-frame of interest were randomly perturbed with corresponding measurement uncertainties.

The emission (contribution) functions

Δλ [Å]

S

3.40	3.62	K XVIII triplet ch #1
3.62	3.80	Ar XIII Lyaα ch #1
3.90	4.07	Ar XVII triplet ch #2
4.11	4.25	S XV 1s ² -1s4p + satellites ch #2
4.35	4.43	SXIV 3p satellites
4.43	4.52	Cl XVI 1s ² -1s2p triplet +
atellit	es	
4.68	4.75	SXVI 1s-3p Lyα
4.74	4.80	Si XIV 1s-5p Lyδ
5.00	5.15	S XV 1s ² -1s2p triplet + satellites
5.25	5.34	Si XIII 1s ² -1s5p
5.34	5.48	Si XIII 1s ² -1s4p+ 5p sat
5.48	5.62	Si XII 4p satellites
5.64	5.71	Si XIII 1s ² -1s3p
5.71	5.86	Si XII 3p satellites
5.92	6.00	Continuum

Flare SOL2002-12-26T08:30 GOESC1.9

http://www.cbk.pan.wroc.pl/resik catalogue.htm

Spectral nights as seen by optical satellite sensor.

Dark grey areas denote times of radiation belts passages – High Voltage is turned OFF.

We selected 13 time intervals $\Delta t=75s \div 200s$ duration covering this part of evolution of the event

08:23:00 08:51:00 08:35:00 C1.9 S00E43

Spectral variability for SOL2002-12-26T08:30

8

6.0

SI XIII

5.5

5.5

6.0-

DEM examples: SOL2002-12-26T08:30

DEM evolution for SOL2002-12-26T08:30

RHESSI for SOL2002-12-26T08:30

D=4.5 x 10⁸ cm

If we consider the total EM of the hot component to be contained in the RHESSI bright kernel, this allows for the estimation of the **density** of hot plasma. We selected 14 time intervals Δt = 6.5 min.÷ 21 min.

SOL2003-02-15T08:10 C4.5

Inverted DEM shapes

DEM evolution for SOL2003-02-15T08:10

Relative proportion of hot and cold plasma

The highest proportion of hot to cooler plasma is at the time of RHESSI 12-25 keV maximum.

RHESSI for SOL2003-02-15T08:10

Changing morphology of hot component D=7.5x10⁸cm

ocentric X (arcsec)

1050

= [1047, -170]

Plasma density is lower in this case.

Concluding remarks

- DEM distributions have been calculated using absolutely calibrated RESIK spectra. 15 spectral bands are identified in the range 3.3 Å ÷ 6.1 Å for the DEM inversion.
- Adjusting the plasma composition is apparently necessary before the DEM inversion (otherwise, the outcome results in biased solutions).
- For two flares, the DEM distributions have two components a cooler component T < 9 MK (probably related to the non-flaring active region) and a hotter one T > 9 MK (flare proper).
- The total EM of the hotter component is orders of magnitude less than that of the cooler component and declines rapidly in the flare later stages.
- The presence of this tiny amount of hot plasma is nevertheless necessary in the data analysis for the observed fluxes in several spectral bands to be reproduced.
- With the emitting region size from imaging instruments like RHESSI, a lower limit for the density of plasma can be estimated: typically this is near 10¹¹ cm⁻³ near the flare peak.

THANK YOU

the ratios of observed and DEM-predicted fluxes in individual spectral bands exceed 15% and 20% respectively. Overall inversion convergence is worse, if at all observed.

This is in contrary to the situation when the event-optimised pattern of abundances is used as is the case for the present study.

DEM for active region ?

SOL2003-03-11T05:50 B7.3

2003/03/11 05:46:00 05:52:00 05:50:00 B7.3 N16W28

DEM & RHESSI

