On the possibility to diagnose the κ - distributions from the Hinode/EIS spectra

Wroclaw, 20-22 XI 2012

<u>Š. Mackovjak^{1,2},</u> E. Dzifčáková², J. Dudík^{1,2}

¹ Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava, Slovakia

² Astronomical Institute of the Academy of Sciences of the Czech Republic, 251 65 Ondrejov, Czech Republic

Overview

- 1. Introduction & Motivation
- 2. **k**-distributions
- 3. EUV diagnostics of the κ -distributions
 - Method
 - Density diagnostics
 - κ-distributions diagnostics
- 4. Conclusions

1. Introduction & Motivation

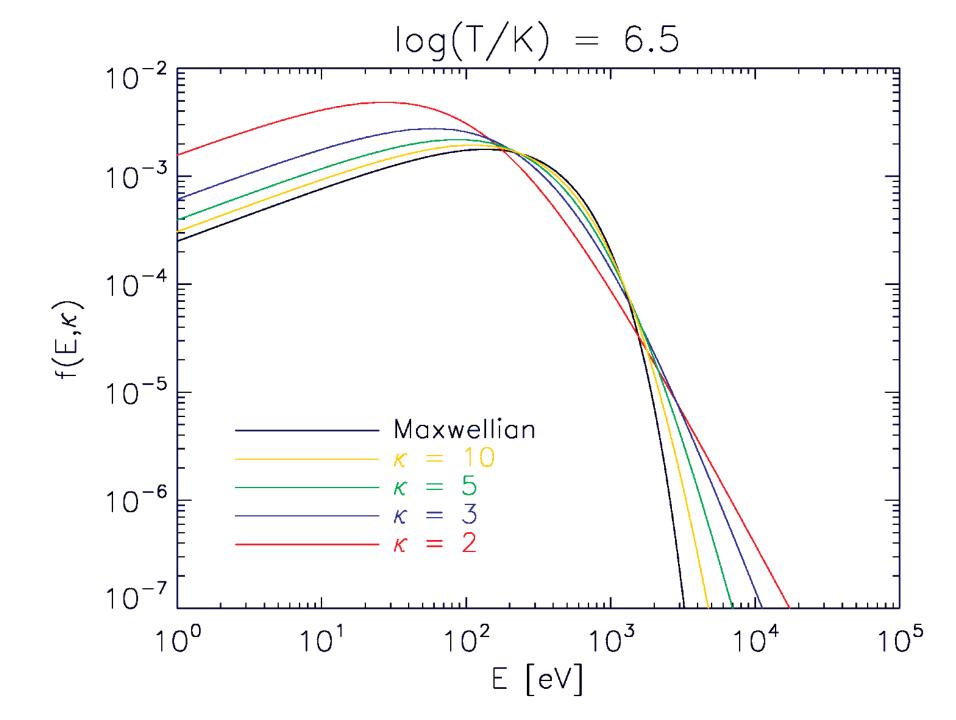
- The κ -distributions were detected in the interplanetary plasma \rightarrow are they present in the solar corona?
- The type of distribution affects intensities of the spectral lines → can we diagnose it from the spectroscopic data?
- Data and theory are required (Hinode/EIS and modified CHIANTI)

2. κ-distribution

A non-Maxwellian distribution of particle energies

$$f(E,\kappa)dE = A_{\kappa} \frac{2}{\sqrt{\pi} (k_B T)^{3/2}} \frac{E^{1/2} dE}{\left(1 + \frac{E}{(\kappa - 3/2)k_B T}\right)^{\kappa + 1}}$$

 A_{κ} – normalization const.


T a κ – parameters of distribution

Owocki & Scudder (1983)

E – electron kinetic energy

 $\kappa \to \infty$: Maxwellian distribution

 $\kappa \rightarrow 3/2$: the highest deviation from Maxwellian distribution

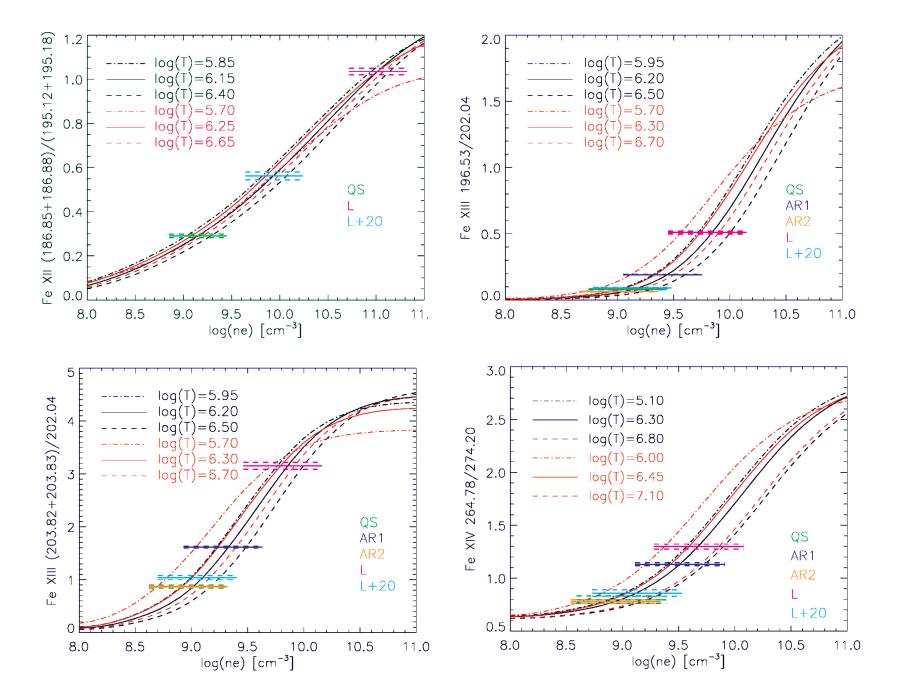
Successful diagnostics

- Maksimovic et al. (1997 a, b); Zouganelis (2004, 2005, 2008) –
 in the solar wind
- Decker et al. (2005) in the outer heliosphere
- Dialynas et al. (2009) in the Saturnian magnetosphere
- Pinfield et al. (1999); Dzifčáková & Kulinová (2011)
 - in the solar transition region
- Lee et al. (2012) line profiles, ion distribution in the solar corona

3. EUV diagnostics of the electron κ -distributions

- Dzifčáková & Kulinová (2010) Fe lines
- Investigated lines: Al, Ar, Ca, Mg, Ni, O, S, Si
- Synthetic intensities of lines

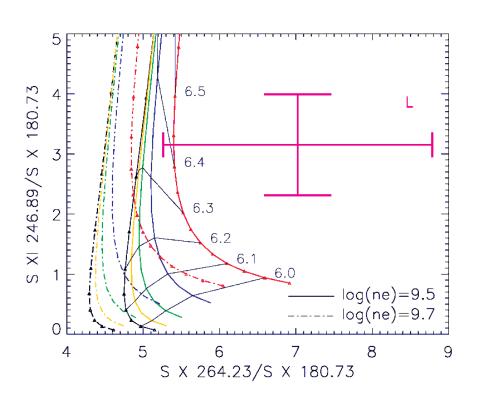
```
\log(T/K) = 5.0 - 7.5; \log(n_e/\text{cm}^{-3}) = 8 - 12;
Maxwellian and \kappa = 10, 5, 3, 2 distribution
```

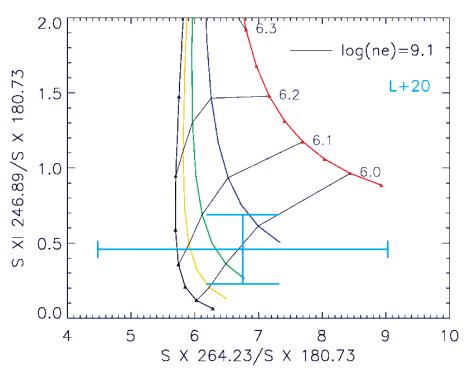

Observed intensities

```
Hinode/EIS: 170 – 210 Å and 250 – 290 Å
QS, AR1, AR2, L and L+20" (Brown et al., 2008)
```

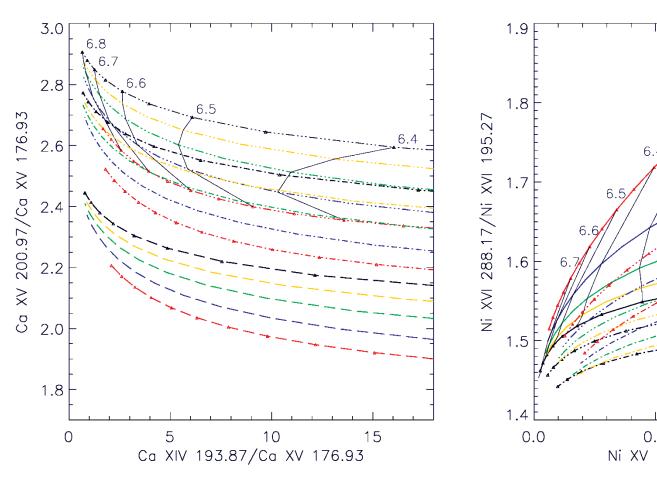
Density diagnostics

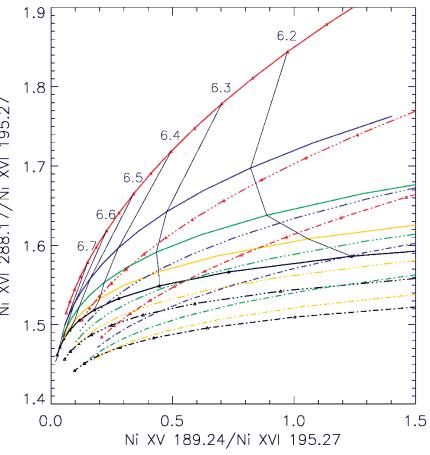
Ion	Ratio	$\log(T_{\rm max}/{ m K})$		Density range
		Maxwell	$\kappa = 2$	$\log(n_e/\mathrm{cm}^{-3})$
Six	261.06 / 258.37	6.15	6.20	8-9.5
Sx	196.81 / 264.23	6.15	6.20	10-12
Fe XII	(186.85 + 186.88) (bl S XI)/(195.12 + 195.18)	6.15	6.25	8 - 11.5
Fe XIII	196.53 / 202.04	6.20	6.30	9 - 11
Fe XIII	(203.82 + 203.83) / 202.04	6.20	6.30	$8.5\!-\!10.5$
S XI	190.36 / 191.27 (bl* Fe ix)	6.25	6.30	10-12
Sxi	$\frac{\left(285.82+285.85\right)/281.40}{}$	6.25	6.35	8-10
Fe XIV	$264.78 \; (bl \; FeXI) / 274.20 \; (bl \; SiVII)$	6.30	6.45	8.5 - 11
Nixvi	194.05 / 185.23 (bl* FeVIII)	6.40	6.60	$\frac{9.5-11.5}{}$
Ar XIV	191.40 / 194.40	6.50	6.70	10.5-12

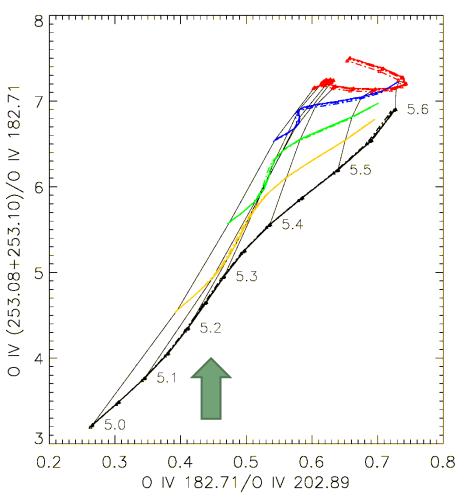

Line ratios proposed by Young (2007)



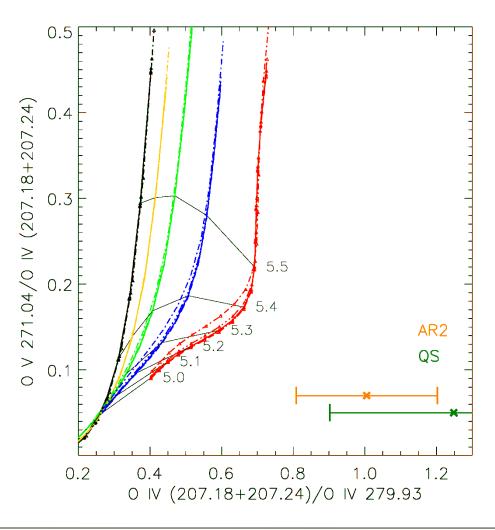
Density diagnostics – Fe ratios


Ratio	Distr.	QS	AR1	AR2	L	L+20
FeXII						
(186.85 + 186.88)/	Mxw	$9.15_{-0.15}^{+0.17}$	saturated	saturated	$^{\dagger}11.02^{+0.16}_{-0.11}$	$^{\dagger}9.93^{+0.18}_{-0.16}$
(195.12 + 195.18)	$\kappa = 2$	$9.09^{+0.15}_{+0.04}$	saturated	saturated	†11.03‡	$^{\dagger}9.85^{+0.17}_{+0.09}$
FeXIII	Mxw	$9.14_{-0.15}^{+0.19}$	$9.45_{-0.13}^{+0.16}$	$9.06^{+0.19}_{-0.14}$	$9.85_{-0.14}^{+0.17}$	$9.18_{-0.14}^{+0.19}$
196.53/202.04	$\kappa = 2$	$9.03^{+0.19}_{-0.25}$	$9.34_{-0.22}^{+0.17}$	$8.96^{+0.18}_{-0.25}$	$9.74_{-0.18}^{+0.18}$	$9.07^{+0.18}_{-0.25}$
FeXIII						
(203.82 + 203.83)/	Mxw	$9.02^{+0.17}_{-0.12}$	$9.33_{-0.11}^{+0.17}$	$9.02^{+0.16}_{-0.12}$	$9.86^{+0.16}_{-0.12}$	$9.10_{-0.12}^{+0.17}$
202.04	$\kappa = 2$	$8.92^{+0.18}_{-0.24}$	$9.24_{-0.20}^{+0.17}$	$8.92^{+0.17}_{-0.23}$	$9.80^{+0.15}_{-0.13}$	$9.01^{+0.18}_{-0.24}$
FeXIV	Mxw	$8.99^{+0.32}_{-0.21}$	$9.51^{+0.24}_{-0.11}$	$8.94_{-0.17}^{+0.28}$	$9.68^{+0.24}_{-0.13}$	$9.13_{-0.17}^{+0.29}$
264.78/274.20	$\kappa = 2$	$8.91^{+0.36}_{-0.32}$	$9.43^{+0.28}_{-0.23}$	$8.86^{+0.32}_{-0.27}$	$9.60^{+0.28}_{-0.25}$	$9.05^{+0.33}_{-0.29}$
mean	Mxw	$9.08^{+0.21}_{-0.15}$	$9.44^{+0.19}_{-0.12}$	$9.01^{+0.21}_{-0.14}$	$9.80^{+0.19}_{-0.13}$	$9.14^{+0.22}_{-0.15}$
	$\kappa = 2$	$8.99^{+0.22}_{-0.30}$	$9.34_{-0.22}^{+0.22}$	$8.91^{+0.23}_{-0.25}$	$9.72^{+0.20}_{-0.17}$	$9.04^{+0.24}_{-0.26}$

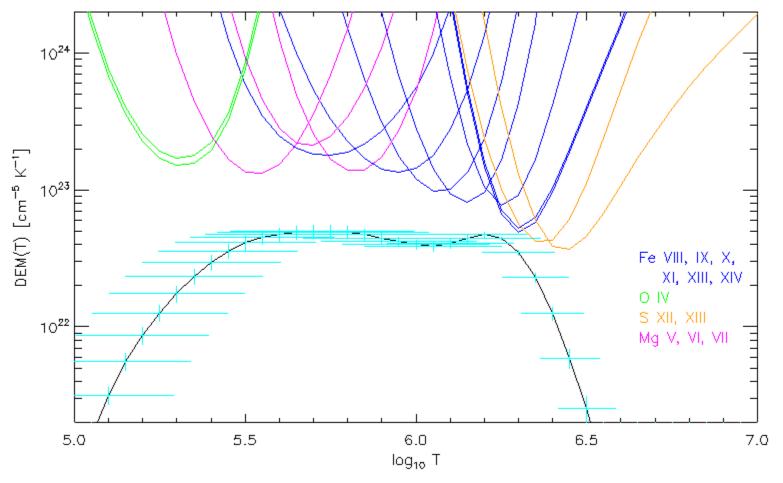

Diagnostics of κ – density dependent



Diagnostics of κ – density dependent



Diagnostics of κ – density independent


- Density independent
- Single-ion diagnostics
- Great diag. opportunity
- O IV $\log(T_{max}/K) = 5.2$
 - Weak lines longexposures are required

Diagnostics of κ – density independent

- Data only for 1 ratio on x-axis
- The distribution is unlikely to be Maxw.
- Blend with Mg IX207.2 Å lines

DEM analyse => the removing of blends

Maxwellian DEM for AR2. Regularized inversion method (Hannah & Kontar (2012))

Suitable line ratios for the κ – distr. diagnostics

Pairs of the line ratios (wavelength in \mathring{A})

```
O IV 182.71 / O IV 202.89^{\dagger} - O IV (207.18 + 207.24) / O IV 202.89^{\dagger}
            O IV 182.71 / O IV 202.89^{\dagger} - O IV (207.18 + 207.24) / O IV 203.04
            O IV 182.71 / O IV 202.89^{\dagger} - O IV (253.08 + 253.10)^{\ddagger} / O IV 182.71
O IV 182.71 / O IV (271.57 + 271.58) - O IV (207.18 + 207.24) / O IV 182.71
O IV (207.18 + 207.24) / O IV 279.93 - O V 271.04 / O IV (207.18 + 207.24)
O \text{ iv } (207.18 + 207.24) / O \text{ iv } 279.93 - O \text{ v } 271.04 / O \text{ iv } 279.93
        Ca\,xiv\,\,193.87\,/\,Ca\,xv\,\,176.93 - Ca\,xv\,\,200.97\,/\,Ca\,xv\,\,176.93
        Ca XIV 193.87 / Ca XV 176.93 – Ca XV 200.97 / Ca XV 182.87
       Ni xv 189.24 / Ni xvi 195.27<sup>#</sup> – Ni xvi 288.17 / Ni xvi 195.27
                 S \times 264.23 / S \times 180.73 - S \times 264.23 / S \times 1246.89
                 S \times 264.23 / S \times 180.73 - S \times 246.89 / S \times 180.73
```

4. Conclusions

- Proposed the diagnostic method of the κ , T, $n_{\rm e}$
- Used CHIANTI and data from Hinode/EIS
- Choose useful EUV line ratios for the diagnostics
- Try to diagnose presence of κ -distribution
- Proper data are needed EIS proposal in progress
- DEM for κ-distributions are planned

Answers

• Are κ-distributions present in the solar corona?

Probably – new data are required

• Can we diagnose κ-distributions from the spectroscopic data?

YES – take care about all possible errors

Mackovjak, Š., Dzifčáková, E., Dudík, J.: 2013, Solar Phys. 282, 263

Thank you for your attention