

Gas Electron Multipliers @ TTA Techtra

PIOTR BIELÓWKA

Prezentacja promująca Projekt Modularne Detektory GEM (MGEM) Nr POIR.04.01.02-00-0080/17

Projekt współfinansowany przez Narodowe Centrum Badań i Rozwoju wybrany w ramach programu Program Operacyjny Inteligentny Rozwój w Konkursie nr 1 - 4.1.2/2017_RANB.

Gas Electron Multipliers @ TTA Techtra

PIOTR BIELÓWKA

GEM detectors are an extension of the concept of multi-wire chambers developed by Georges Charpak (Nobel Prise winner in 1992)

G.Charpak, F. Sauli, J. Santiard @CERN

Fabio Sauli inventor of GEM technology

GEM detectors typically consist of a stack of foils, each operated at ca. 500V difference placed a drift cathode and a readout anode.

GEM detectors offer excellent spatial, temporal and energy resolution at costs much lower than solid-state ones.
GEM detectors tolerate extremely high radiation levels.

Proportional region

- When electrical field is applied to the gas we can collect the electrons to anode
- However the signal is <u>extremlly small</u>

Ionizations

Amplification regions

- Applying a large electric field allows us to create avalanche secondary ionization in the gas
- The signal is large, but we the magnitude depends on avalanche length no proportionality to energy loss!

Readout PCB

GEMs and Micromegas decouple the readout geometry from charge collection and amplification. Thus readout is not limited to parallel strips/wires.

Cartesian, Compass, LHCb

Small Angle

GEMs in HEP experiments Several HEP experiments use or will use GEM detectors, e.g.:

TOTEM T2 telescope

Target spectrometer PANDA

The CMS TPC

2002: Implementation of GEM technology into Techtra company.

Quolity control: optical scaning

Quolity control: electrical testscaning

Wrocławski Park Technologiczny

Dedicated laboratory for GEM production

GEM foils 100x100mm2

Copper etching machine

PCB developer

Cleanroom: ISO7

UV exposure unit

GEM detectors produced and offered by Techtra

"proof of concept" Techtra

Operational prototype, Techtra

Final version of GEM detector, Techtra

GEM detectors measurement setup

GEM detector V1.1

- Designed and validated,
- A few detectors are already delivered to clients,
- Channels: 128 x 128 strips,
- For 10x10 cm detector kit,
- Sampling rate of 6,25 kHz,
- ADC resolution 20-bit,
- Minimal ADC range 6,25 pC,
- 100 Mbit Ethernet communication,
- Connects directly onto detector readout plate,
- Noise level: about 1 fC peak-topeak disconected from strip readout,
- With strip readout connected noise increases 3 Times,

GEM detector V2.0

- Design is based on experiences gathered from DAQ V1.1 detector project,
- Sampling rate is increased from 6,25 kHz to 17 kHz
- As the new DAQ is much faster, we can use higher count-rate X-ray source,
- ADC resolution is also improved from 20-bit to 24-bit,
- Minimal ADC range 6,25 pC,
- 100Mbit Ethernet communication,
- 100Mbit communication is too slow for huge amount of data from new DAQ ⁽³⁾
- We introduced digital triggering and data processing inside FPGA,
- To measure noise performance and to validate the detector we have integrated digital phosphor function.

http://techtra.pl/en/technology/gem-based-detector/

http://techtra.pl/en/technology/gem-based-detector/

GEM detector data acquisition software – visualization

- Data from detector are transmitted in packages of 512 samples from each of 256 channels,
- We use candlestick plot to show average values and min-max values spread for each channels on one plot (based on 512 samples),
- On candlestick plot we can see on which channels we have detected events and how many such channels we have,
- On channel line plot we can see all of 512 samples from 1 chosen channel - something like oscilloscope.

GEM detector data visualization software

- Designed specially for our detector DAQ,
- Application performs DIGITAL TRIGGERing function on raw data,
- User can change triggering parameters to see the difference in results on the same raw data,
- Software automatically recognizes peaks correspond to events and reconstructs their position on the 2D map,
- User can see the image reconstruction progres on-live during data acquisition,

http://techtra.pl/en/technology/gem-based-detector/

http://techtra.pl/en/technology/gem-based-detector/

Measurement electronics designing and prototyping

http://techtra.pl/en/technology/electronics-design/

Our Core GEM-team

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND

TTA TECHTRA Sp. z o.o.

ul. Dunska 13 54-427 Wroclaw Poland phone: +48 71 798 58 85 www.techtra.pl e-mail: techtra@techtra.pl