Elementary flare profile (EFP) fit to X-ray light curves registered by STIX - Continuation

Made by: Karol Kułaga

Astronomical Institute, University of Wrocław

Elementary Flare Profile

$$f(t) = \frac{1}{2}\sqrt{\pi}A C \exp\left[D(B-t) + \frac{C^2D^2}{4}\right] \left[\operatorname{erf}(Z) - \operatorname{erf}\left(Z - \frac{t}{C}\right)\right]$$

$$f(t) = \int_0^t g(x)h(t-x) \, \mathrm{d}x.$$

$$g(x) = A \exp(-(x - B)^2/C^2)$$

$$h(x) = \exp(-Dx)$$

$$Z = \frac{2B + C^2D}{2C}$$

Figure 3 The model of the soft X-ray flare time profile f(t)results from the convolution of a Gaussian function describing the energy release rate g(x)(Equation (2)) with an exponential decay function h(x)describing energy dissipation (Equation (3)).

Flare Characteristics from X-ray Light Curves M. Gryciuk et. al. 2017

Automatic EFP fit

- Compare background level with data
- Smooth with 9 points and again with 3 points
- Searching for extremas
- Checking if found extremas are for this same flare/flares (limit above background)
- Combining extremas if counts are above the limit
- Parameter randomization 150 000 Times and using MpFit

2022-Jan-01 19:08:39

2022-Jan-01 19:08:39

Black - Vth+Thick2
Red - Thermal
component (Vth)
Blue - Nonthermal
component (Thick2)
Orange - Observed
spectrum
Ec - Cutoff energy

Example for automatic fit from January 2022; 219 EFP and 479 rejected flares (multiple peaks, bad fits)

$$f(t) = \frac{1}{2}\sqrt{\pi}A C \exp\left[D(B-t) + \frac{C^2D^2}{4}\right] \left[\operatorname{erf}(Z) - \operatorname{erf}\left(Z - \frac{t}{C}\right)\right]$$

Example of flare with estimated amplitude and FWHM

Green - Original Data
Black - Elementary flare
profile
Red - Background
Purple - Profile Amplitude
Orange - Flare FWHM

Flare amplitude, duration, rise time and Decay time

Interpolated background level

Background level is slowly decreasing

30 detectors and 12 pixels were used to determine background from background files

Start Time 01-Jan-22 08:39:40.201

Summary

- Almost 30% of automatic found flares are EFP (Jan. 2022)
- Algorithm will search for flares from January 2022 to July 2023
- Simple flares (EFP) will be selected from found events to future work

Thank You for the attention

