

Elementary flare profile (EFP) fit to X-ray light curves registered by STIX - Continuation

Made by:
Karol Kułaga

Astronomical Institute, University of Wrocław

Elementary Flare Profile

- ▶
$$f(t) = \frac{1}{2} \sqrt{\pi} A C \exp\left[D (B - t) + \frac{C^2 D^2}{4}\right] \left[\text{erf}(Z) - \text{erf}\left(Z - \frac{t}{C}\right) \right]$$
- ▶
$$f(t) = \int_0^t g(x)h(t-x) dx$$
- ▶
$$g(x) = A \exp(-(x - B)^2 / C^2)$$
- ▶
$$h(x) = \exp(-Dx)$$
- ▶
$$Z = \frac{2B + C^2 D}{2C}$$

Figure 3 The model of the soft X-ray flare time profile $f(t)$ results from the convolution of a Gaussian function describing the energy release rate $g(x)$ (Equation (2)) with an exponential decay function $h(x)$ describing energy dissipation (Equation (3)).

Automatic EFP fit

- ▶ Compare background level with data
- ▶ Smooth with 9 points and again with 3 points
- ▶ Searching for extrema
- ▶ Checking if found extrema are for this same flare/flares (limit above background)
- ▶ Combining extrema if counts are above the limit
- ▶ Parameter randomization 150 000 Times and using MpFit

Light curve 4–10 keV

2022-Jan-01 19:08:39

2022-Jan-01
19:08:39

Black - Vth+Thick2

Red - Thermal
component (Vth)

Blue - Nonthermal
component (Thick2)

Orange - Observed
spectrum

Ec - Cutoff energy

01-Jan-22 18:40:22.085

Ec=12 keV

Example for
automatic fit
from January
2022; 219 EFP
and 479
rejected flares
(multiple
peaks, bad fits)

$$f(t) = \frac{1}{2}\sqrt{\pi}A C \exp\left[D(B-t) + \frac{C^2 D^2}{4}\right] \left[\text{erf}(Z) - \text{erf}\left(Z - \frac{t}{C}\right) \right]$$

Example of flare with estimated amplitude and FWHM

- Green - Original Data
- Black - Elementary flare profile
- Red - Background
- Purple - Profile Amplitude
- Orange - Flare FWHM

Flare amplitude, duration, rise time and Decay time

Interpolated background level

Background level is slowly decreasing

30 detectors and 12 pixels were used to determine background from background files

Summary

- ▶ Almost 30% of automatic found flares are EFP (Jan. 2022)
- ▶ Algorithm will search for flares from January 2022 to July 2023
- ▶ Simple flares (EFP) will be selected from found events to future work

Triggers fitted with EFP at 3/4 amplitude

Thank You for the attention

Background level at current distance

