

FLARE LIST FUN 🐲

Laura Hayes & Hannah Collier

STIX team meeting Wroclaw Nov 2023

ESA UNCLASSIFIED – For ESA Official Use Only

So What? Who cares?

💳 📰 📲 🚍 💳 🕂 📲 🔚 🔚 📰 📲 🚍 📲 🚍 🛶 🚳 🍉 📲 👯 🚼 🖬 🔚 ன 🆛 👘 🔶 • The European space Agency

STIX flares to date

*

STIX flares to date

💳 💶 📲 🚍 💳 🛶 💵 🔚 🔚 🔳 📲 🚍 💏 🔤 🛶 👰 🛌 📲 🚼 🖬 ன 🔤 🛶 🛊 > THE EUROPEAN SPACE AGENCY

- 1. Start with data centre operational flarelist (Hualin's list)
 - -getfrom stixdcpy
 - trim for flares > 1000 counts in peak 4-10 keV channel

HE IN IN IN INTERPRETATION OF A CARE AGENCY → THE EUROPEAN SPACE AGENCY

1. Start with data centre operational flarelist (Hualin's list)

- -getfrom stixdcpy
- trim for flares > 1000 counts in peak 4-10 keV channel

2. Search for available pixel

- query for Request IDs that are available over the time range of flare (start-end) Fido
- For each Request ID pixel file, check that the peak of flare is within the file time range
- save available Request IDs for each flare

10016 flares -> 9844 flares

40,000 flares ->

10016 flares

Available pixel data

Available pixel data

Start with data centre operational flarelist (Hualin's list)

- get from stixdcpy
- trim for flares > 1000 counts in peak 4-10 keV channel

2. Search for available pixel

- query for Request IDs that are available over the time range of flare (start-end) Fido - For each Request ID pixel file, check that the peak of flare is within the file time range - save available Request IDs for each flare

10016 flares -> 9844 flares

3. Download the available pixel and auxiliary data for each event - from database of Request IDs for each flare, (choose one for analysis) download

- from database of Request IDs for each flare, (choose one for analysis) download data - remove events that do not have files or aux data.

9844 flares -> 9635 flares

40,000 flares ->

10016 flares

1. Start with data centre operational flarelist (Hualin's list)

- -getfrom stixdcpy
- trim for flares > 1000 counts in peak 4-10 keV channel

2. Search for available pixel

- query for Request IDs that are available over the time range of flare (start-end) Fido - For each Request ID pixel file, check that the peak of flare is within the file time range
- save available Request IDs for each flare

40,000 flares -> 10016 flares

> 10016 flares -> 9844 flares

9844 flares ->

9635 flares

3. Download the available pixel and auxiliary data for each event

from database of Request IDs for each flare, (choose one for analysis) download data
remove events that do not have files or aux data.

4. Run modified version of stx_estimate_flare_location

- 40s integration over peak of flare, 4-16 keV energy range

- save the backprojection maps for testing

1. Start with data centre operational flarelist (Hualin's list)

- -getfrom stixdcpy
- trim for flares > 1000 counts in peak 4-10 keV channel

2. Search for available pixel

query for Request IDs that are available over the time range of flare (start-end) Fido
For each Request ID pixel file, check that the peak of flare is within the file time range
save available Request IDs for each flare

3. Download the available pixel and auxiliary data for each event

from database of Request IDs for each flare, (choose one for analysis) download data
remove events that do not have files or aux data.

4. Run modified version of stx_estimate_flare_location

- 40s integration over peak of flare, 4-16 keV energy range - save the backprojection maps for testing

5. Test "quality" of backprojection maps

- For back projection maps for each flare, if other maximia in the map is > 90% of flare location

10016 flares -> <u>8598 flares</u>

40,000 flares ->

10016 flares

1. Start with data centre operational flarelist (Hualin's list) - get from stixdcpy

- trim for flares > 1000 counts in peak 4-10 keV channel

2. Search for available pixel

- query for Request IDs that are available over the time range of flare (start-end) Fido
- For each Request ID pixel file, check that the peak of flare is within the file time range
- save available Request IDs for each flare

3. Download the available pixel and auxiliary data for each event

from database of Request IDs for each flare, (choose one for analysis) download data
 remove events that do not have files or aux data.

4. Run modified version of stx_estimate_flare_location

- 40s integration over peak of flare, 4-16 keV energy range
- save the backprojection maps for testing

5. Test "quality" of backprojection maps

- For back projection maps for each flare, if other maximia in the map is > 90% of flare location

6. Coordinate magic

- Using SPICE kernals and the sunpy coordinate stack, convert coordinates to different frames (HPC, HGS etc) and determine whether observed by Earth

40,000 flares ->

10016 flares

>>> flarelist = pd.read_csv("STIX_flarelist_w_locations_20210214_20230928_version1.csv") >>> flarelist

start_UTC	end_UTC	peak_UTC	4-10 keV	10-15 keV	15-25 keV	25-50 keV	50- 84 keV	att_in	hpc_x_solo	hpc_y_solo	hpc_x_earth	hpc_y_earth	visible_from_earth	hgs_lon	hgs_lat	hgc_lon	hgc_lat
2021-02- 14T01:41:06.670	2021-02- 14T01:49:14.671	2021-02- 14T01:44:14.670	1983	463	183	927	543	False	617.878235	706.284912	NaN	NaN	False	-139.884661	22.644694	279.867915	22.644694
2021-02- 14T13:21:34.741	2021-02- 14T13:33:02.742	2021-02- 14T13:24:54.741	1855	271	151	927	543	False	813.800781	721.484314	NaN	NaN	False	-131.832973	23.132900	281.512729	23.132900
2021-02- 14T19:34:46.779	2021-02- 14T19:43:18.780	2021-02- 14T19:36:46.779	1215	271	151	927	495	False	823.278748	709.062012	NaN	NaN	False	-130.979405	22.771634	278.965938	22.771634
2021-02- 15T07:22:43.151	2021-02- 15T07:34:43.153	2021-02- 15T07:27:03.152	1343	215	91	927	543	False	970.853149	726.709595	NaN	NaN	False	-124.198594	23.339267	279.251963	23.339267
2021-02- 15T08:14:39.159	2021-02- 15T08:28:35.160	2021-02- 15T08:16:35.159	1855	271	91	927	495	False	994.707275	724.366272	NaN	NaN	False	-123.217183	23.257777	279.780434	23.257777
2023-08- 26T21:45:44.446	2023-08- 26T21:51:08.447	2023-08- 26T21:47:20.447	14847	3199	2431	1727	543	False	-1195.603516	216.435303	934.560803	131.628447	True	84.582969	8.699326	188.141859	8.699326
2023-08- 26T21:53:44.447	2023-08- 26T23:34:16.458	2023-08- 26T22:26:28.451	102399	6399	543	799	399	False	1335.155151	-196.268616	NaN	NaN	False	-115.996981	-8.362376	347.202822	-8.362376

Currently (updated last night) 8598 flares in this list

STIX flare list with locations: https://github.com/hayesla/stix_flarelist_science

STIX flares to date Jan 2021-Sept 2023 : Earth-observed flares

STIX flares : HPC at 1AU

Distribution of STIX flares transformed to putting Solar Orbiter at 1AU

More flares "appear" on limb due to solar surface sphere Similar distrubution to what we see with GOES/XRS and with RHESSI etc

■ = ■ = = + ■ = = = ■ = = =

STIX flares : Butterfly Diagram

STIX flares : Butterfly Diagram

STIX flares : Heliographic Stonyhurst, Carrington

STIX flares : Distribution at limb

FERMI/GBM flare list

https://hesperia.gsfc.nasa.gov/fermi/gbm/qlook/fermi_gbm_flare_list.txt

FERMI/GBM flare list

INTELEDROPEAN SPACE AGENCY

What new science can we do with this - Fermi/GBM STIX flares?

Where should we put the STIX-Fermi/GBM list?

Occulted flares

• Can now do statistics with flares that were seen on limb from Fermi/STIX and on disk with STIX/ Fermi.

Directivity studies (or tests)

- Now have many flares along Sun-Earth line for calibration good for testing GBM pile-up
- Can try find some good candidates for HXR directivity

💻 📰 📰 💳 🖛 🕂 🛛 🗮 🔚 📰 📰 👬 📰 🚛 🚱 🛌 🕼 🖬 🗰 💏

Track flaring active regions over rotations - combine STIX + GOES/XRS

Updates and Plan

- STIX flare list with locations important allows us to do new science
- What we can do?
 - should it also live on the Heliophysics Event Knowledgebase (HEK)? How do we deal with different coordinate frames? Carrrington coordinates?
 - How to run automatically? Event month? Wait for data to come down? Where should it live?
 - What else do people want? What do you need a flare list for?
 - Should think about "standards" for flare lists in general as a community (similar to the idea of SOL2002-02-02), will help compare across instruments
- In particular what can we do with other Solar Orbiter instruments?

A girl can dream....

\leftrightarrow \rightarrow C $($ soar.esac.esa.int/soar/#search		@ @ ☆ 🕼 🖈 🖬 🍑 🗄
EUROPEAN SPACE AGENCY 🗗 SCIENCE & TECHNO	LOGY 🗗	SIGN IN
ntil further notice, MAG LL data is unavailat	le. A change in onboard data processing, required to maintain the high performance of the instrument, has not yet been	reflected in ground processing of telemetry.
Solar Orbiter Archive		Cesa
OAR 1.12.0		
Ŕ		
Q	E DATA SEARCH	
	SCIENCE AUXILIARY	
?	Time (from/to) 2022-11-09T00:00:00	
M	Instrument All	
	Proc. level All	
	File Name	
	SOOP Name/Type All	
	Include also: Low Latency Inactive files	
	SOOPs (Solar Orbiter Observing Plans): • Full information Inventory information (external links): • Daily availability of all in-situ experiments • Inventories of key remote sensing and in situ science datasets Q Search C Clear	
	COPYR	IGHT © EUROPEAN SPACE AGENCY, ALL RIGHTS RESERVE

-

→ THE EUROPEAN SPACE AGENCY

•

A girl can dream....

ar Orbiter Archive					5.395T		le ini	. I .	
	IE DATA	SEARCH							
	SCIENCE	AUXILIARY							
		Time (from/to)	2022-11-09T00:00:00	2022-11-0	9T23:59:59				
		Instrument	All			-			
		Proc. level	All	-					
		File Name							
		SOOP Name/Type	All			-			
		Include also:	Low Latency Ir	nactive files					
	SOOPs (Sola · Full informa Inventory info · Daily availa · Inventories	Flare ar Orbiter Observing Pla ation mration (external links) ability of all in-situ expen of key remote sensing	ins): : iments and in situ science datase	ets					
L				Q Search C	Clear				

-

→ THE EUROPEAN SPACE AGENCY

*

A girl can dream....

The 3D Sun : Labelling Events + Locations

 Need event lists for coordinate system in 3D e.g. indexing events not solely on Earth side

- Field of view of observations
- Flares, eruptions
- Active regions
- Filaments etc

AIA 171Å

SolO/EUI 174Å

Example July - Oct 2022

