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Motivation and aim of this study
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oDuring SEP events, there are excess counts above background 
in STIX

o Example: July 24th-27th 2023, ~200 flares, at least 3 > M class

SEP related counts



Motivation and aim of this study

oAim to identify the relevant particles, their energies and the 
mechanism(s) by which they result in contamination of the STIX X-ray 
spectrum during SEP events

oUnderstand the instrument response with the intention of performing 
background subtraction for interesting science cases
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Observational Overview
Event 2: EGAMEvent 1: Interplanetary Shock
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STIX data
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Observational Overview

Event 1: Interplanetary Shock
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Event 2: EGAM



Methods

o Simulate the instrument response to energetic electrons

oDue to the lack of a spacecraft mass model we create a simplistic model of the 
spacecraft components and analytically compute the Bremsstrahlung and line 
emission

o The equivalent thicknesses and the relative contribution of these components are 
tuned by fitting the output to the measured spectrum during the EGAM
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Geant4 
simulation

• Simulate STIX response to a beam of 0.08-8 MeV e- (no spacecraft model)

• Physical processes considered include Bremsstrahlung, compton scattering, 
PE effect etc

• Components included in CAD model: Be window, tungsten grids, Caliste-SO 
& DEM etc

GEANT4 Collaboration.
S. Agostinelli (Genoa U.) et al.
DOI: 10.1016/S0168-9002(03)01368-8
Published in: Nucl.Instrum.Meth.A 506 (2003), 250-303 7

https://inspirehep.net/authors/1915302
https://inspirehep.net/institutions/902814
https://doi.org/10.1016/S0168-9002(03)01368-8


STIX Instrument Response

K⍺

Kβ

o Little-to-no continuum 
emission in the simulated 
spectrum

o Could it originate from other 
spacecraft components?
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EGAM calibration spectrum vs. simulated spectrum 



Steps involved:
1. Predict electron spectrum along orbit
2. Initial guess spacecraft components (no mass model available)
3. Analytically compute the Bremsstrahlung radiation and line emission from 

those materials + absorption
4. Convolve output with detector efficiency and energy resolution
5. Fit output to measured spectrum by varying the free parameters (equivalent 

thicknesses and relative contribution of spacecraft materials)
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Model spacecraft components and compare to 
the data



o No particle data (e.g. EPD)

o Predict the electron population along 
Solar Orbiter’s trajectory using AE9 
model

o Static model, mean level of solar 
activity
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AE9 Model of Earth's Radiation Belt
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The components included are:

o Be entrance window with 
attenuation by W grids with 
equivalent thickness of 200±35 
µm

o Al thick and thin component with 
equivalent thicknesses of 4.92 ±
0.43 cm and 1.25 ± 0.07 cm 
respectively

o A Ti component of equivalent 
thickness 62 ± 4µm 

o W X-ray fluorescence
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Fit Measured Spectrum with an Analytical 
Model

Ti

Al #1

Al #2
W

W lines 



Event spectra comparison

o EGAM ~2-3 times stronger 
than the shock @ 0.5 - 1 MeV

o Leads to a stronger signal in 
STIX 
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Conclusions from this study

o Electrons with energies > ~ 0.5 MeV are significant contributors to the contamination in STIX 
during SEP events

o Presence of W in grids produces X-ray fluorescence lines

o We demonstrate that bremsstrahlung emission arises from interaction of particle with 
materials surrounding the instrument, however, a spacecraft mass model is required to fully 
understand the response.

 

o Caliste-SO are robust to SEP events
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Interesting event for future analysis: 
06th Sep 2023 shock
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Interesting event for future analysis: 
06th Sep 2023 shock
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Interesting event for future analysis: 
06th Sep 2023 shock

Peak at 59 keVLow energy 
titanium bump
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Outlook and future work

o Many energetic particle contamination events from flare associated SEPs, IP shocks & 
EGAMs to study

o Future work to analyse the effect of energetic ions

o Compare the effect of ion rich vs electron rich events

o Consider particle anisotropy further 

o Search further for a detailed spacecraft model!
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Thank you for your attention!
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Additional Slides
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Caliste-SO Detector Recovery
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o Calibration spectrum recovers 
well after SEP events 



Analytical Model
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4𝐵# are Bremsstrahlung radiation components 
and depend on:
• Kramer’s	bremsstrahlung	profile
• 𝑍"#$%&"!, 𝑍#""&'(#")$!, 𝑑#""&'(#")$!, 

𝑡#""&'(#")$!
• Electron spectrum along orbit
• Radiation yield
• Detector efficiency
• Energy resolution dE

Free parameters: 𝒘𝒊, ∝, 𝒕𝒂𝒕𝒕𝒆𝒏𝒖𝒂𝒕𝒐𝒓𝒊
𝑖 ∈ 2, 7 is minimized 

Fit the data

Physical data and constants

xraylib

Electron spectrum and orbital data
• Solar Orbiter trajectory
• OMERE 
• AE9 electron belt model

Geometry ‘first guess’

Calibration data
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Fit the Calibration Spectrum with Analytical 
Models
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