

STIX hard X-ray signatures from erupting filaments

Muriel Zoë Stiefel^{1,2}, Andrea Francesco Battaglia^{1,2}, Hannah Collier^{1,2}, Paolo Massa³, Hualin Xiao¹, Louise Harra^{2,4}, Säm Krucker^{1,5}

- ¹ Fachhochschule Nordwestschweiz (FHNW)
- ² ETH Zürich
- ³ Western Kentucky University
- ⁴ PMOD/WRC
- ⁵ Space Science Laboratory Berkeley

University of Applied Sciences and Arts Northwestern Switzerland

Content

- Starting Point: SOL210923
 - Outline project
 - Analysis/Results
 - Interpretation
- Science Questions
- Approaches
 - Statistical Survey
 - Simulations for STIX

Starting Point: SOL210923

- Flare on the 23.09.2021, 15:20 UTC
- M1.8-GOES class
- Observed by:
 - STIX/SO
 - EIS & XRT /Hinode
 - ullet

10+

1e+4

15:15 Sep 23, 2021 • AIA/SDO

SOL210923: Four distinct, nonthermal footpoints

STIX 18.0 - 28.0 keV image (Aspect corrected) 2021-09-23T15:20:39.354800 - 2021-09-23T15:21:37.546600 UT

Image from Stiefel et al. (2023)

SOL210923: Four distinct, nonthermal footpoints

Impulsive Phase

Thermal Peak

Images from Stiefel et al. (2023)

SOL210923: Four distinct, nonthermal footpoints

Images from Stiefel et al. (2023)

SOL210923: Interpretation

Electrons moving along flux rope legs and emitting Bremsstrahlung at anchor points

Can this be observed more frequently in filament eruptions?

Science Questions

- Can we measure accelerated electrons precipitating along legs of filaments ?
- What is their energetic contribution compared to electrons in flare loops?
- Where do the electrons lose their energy?
- Imaging Spectroscopy: comparison spectral index filament anchor points vs. flare loop footpoints
- Where are the boundaries of STIX imaging capability?

Statistical study of hard X-rays at anchor points of filaments

Method Systematic search of filament eruptions observed by STIX and AIA:

- STIX flare list -> filter for flares observed by Earth
- Sort list by high energy counts (25-50 keV)
- JHelioviewer: check flares for filament eruption & signs in UV
- For promising flares: look at STIX images
- Analysis of the flares

Statistical study of hard X-rays at anchor points of filaments

Imaging Spectroscopy

- Electron maps: electron visibilities and regularized visibilities
- STIX imaging spectroscopy¹

¹ https://github.com/afbattaglia/STIX-GSW_test-imaging-spectroscopy

Boundaries of STIX imaging: Simulations

From Stiefel et al. (2023): rule of thumb 10'000 counts are needed to be able to reconstruct four sources (with similar flux)

But where are the boundaries really?

Goal: from position, size & flux of sources -> simulate image Method:

- Python Calculation Tool¹ "pystixsim" -> under development & testing
- Moiré pattern -> visibilities -> Imaging
- Make systematic tests for flares with multiple sources

pystixsim: Graphical Projection

Current Pipeline on Simulations

Input: Source Size and Location

Moiré Pattern (Illuminated Area)

Backprojection

Questions?

Questions

- Difference Flux Rope vs. Filament? Could electrons be detected for both?
- What do we really expect to see at anchor points of filament?

SOL210923: Nonthermal image with three imaging methods

