

Simultaneous solar flares observations in X-rays and meter wavelengths using STIX and MWA

Rohit Sharma, Andrea Battaglia, Sam Krucker, Marina Battaglia FHNW, Windisch, Switzerland Date: 9th Nov 2023 STIX Meeting 2023, Wrocław, Poland

Novelty in STIX-MWA Observations (3-D Picture)

Murchison Widefield Array

Murchison Widefield Array

 MWA situated in Western Australia is a precursor of Square Kilometer Array (SKA). It operates in frequency range 80-300 MHz.

Parameters	150 MHz	200 MHz	
Number of tiles	128	128	
Area of one tile			
at zenith (m ²)	21.5	19.8	
Total collecting area (m ²)	2752	2534	
Receiver temperature (K)	50	25	
Typical sky			
temperature (K)	350	170	
Field of view (deg ²)	610	375	
Instantaneous			
bandwidth (MHz)	30.72	30.72	
Spectral resolution (MHz)	0.04	0.04	
Temporal Resolution	0.5s	0.5s	
Polarization	Full Stokes	Full Stokes	
Minimum baseline (m)	7.7	7.7	
Maximum baseline (m)	2864	2864	
Angular resolution			
(1.5 km array)	$\sim 3'$	$\sim 2'$	
Angular resolution			
(3 km array)	$\sim 2'$	$\sim 1'$	

(Tingay et al. (2012)[4])

Instantaneous MWA UV Coverage

Weak and variable radio emission / bursts

Ubiquitous Weak Meterwavelength Radio Bursts Between 3,000 K & 40,000 K Time: 1100.5 sec

- What is the origin of weak features?
- Electron beams
- Plasma flow / Waves
- Emission mechanisms

Solar Observation with MWA

- + Phase-I (mid-2013 2016)
- Particle Acceleration in the outer corona during strong solar flare
- Scattering of radio waves / Coronal turbulence
- Coronal Mass Ejections
- + Phase-II (2016 mid-2021)
- Compact & Extended
- Solar Flares (less frequent)
- Mark the extended times
- + Phase-III (2021-2026)
- Suitable for all solar science cases with good spatial resolution and dense cores
- 25th Solar Maximum capture the rising phase of the cycle
- Not solar dedicated, solar maximum is ideal time
- 12 X-class flare per year
- Targeted / Trigger mode observation to catch a big flare
- MWA Cycle 22 100 hours of observation between 1st May 2022 to 31st September 2022
- Best Observations in September month

15th September 2022

15th September 2022 – STIX Position

Event – AIA flare site

Event – AIA Movie

Event – Overall Radio Observations

Radio burst

Initial analysis with 10 s time integration

Nothing from the flare here!

Event – Radio Images

Combined Radio Contours and EUV

Temporal Evolution and Complexities

+ Radio Drift frequency: 110 MHz to 78 MHz

+ Time difference: 60 seconds

+ Radio Drift Rate: 0.45 MHz/s

+ Drift speed for electron: 0.62 Mm/s

~ 620 km/s

+ HXR & 110 MHz peak time difference: 60 sec / rate

Flare #2, peak 1

Flare #2, peak 1

Flare #2, peak 2

- Peak1: EM ~ 3.23*10⁴⁵ cm⁻³
- Peak2: EM ~ 1.03*10⁴⁶ cm⁻³
- Volume: $(40''*20'')^{1.5} = (1.5^{18} \text{ cm}^2)^{1.5} = 1.8*10^{27} \text{ cm}^3$
- Thermal density Peak 1 : 6.1e8 cm⁻³ / Fundamental Plasma frequency ~ 220 MHz
- Thermal density Peak 2 : 1.1e9 cm^-3 / Fundamental Plasma frequency ~ 300 MHz

Magnetic Extrapolation - PFSS

Magnetic Extrapolation – PSIMAS models / FORWARD

Dense large loops hosting radio sources

Estimation of drifts rates

Frequency (MHz)	Newkirk height (Mm)	Newkirk harmonic (n=2) height (Mm)	Electron density (cm^-3)	Electron density (n=2) (cm^-3)	Magnetic Field (Gauss)	FORWARD densities (n=1 heights)	Alfven speed (Mm/s)
78	229	439	7.5e7	1.2e7	3	1.8e7	2.7
88	200	395	9.6e7	2.7e7	4	2.6e7	3.2
110	186	324	1.3e8	3.4e8	12	3.8e7	8.3

+ Drift speed for electron: 1.88 Mm/s ~1880 km/s assuming

fundamental emission for R1 source

+ HXR & 110 MHz peak time difference: 60 sec / rate ~ 2.3 Mm/s

+ Slow drift rates (< 0.5 keV) - Unlikely to sustain transport, however

plasma perturbations could be produced by a moving driver

+ Different population electrons producing thermal loop top source

Summary & Future Work

- Radio and X-ray emissions are complimentary in ideal situations
- Weak radio features are important to establish correlation with EUV brightening and X-rays
- Total dynamic spectrum is not a smart way to draw initial impressions for weak variability
- Particle acceleration study under 3-D magnetic field topology EUV close to the footpoints, STIX loop top and radio loop top
- Large scale magnetic loops host two radio source at the loop tops and can be seen in meterwaves near the limb (< 1 Rsun)
- R1 source could be connected to STIX flares 5 and 6
- Emission mechanism of the loop top is likely plasma emission mechanism for R2 source, while R1 source at harmonic emission
- STIX captured the X-ray dense thermal loop top source in the occulted flare
- Initial PFSS magnetic extrapolation suggests magnetic connectivity to the far away different active regions
- Slow drift rates and brightness of R2 source suggests different electron population than thermal STIX source
- Drift rates more closer to plasma flow (evaporation) / Alfven waves !!

Proper projection

Finer MWA data at 0.5 s resolution

Cycle 2023 data / Next year 2024 data with 256 tiles

Stokes V maps

HMI Carrington

